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1. Background
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Around 70% of the ocean is characterised by either seasonal

Light-limited or permanent stratification.
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Fig 1: The two-layered structure of upper ocean biogeochemistry in
oligotrophic gyres from Dai et al. (2023). The surface mixed layer (SML)
divides the euphotic zone into the upper nutrient-limited layer and the

lower Iiiht-limited Iaier.



1. Background
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Fig 2: Some examples of chlorophyll products from ocean colour climate change initiative.




1. Background

Viljoen et al. (2024) observed a decreasing trend in chlorophyll integration within the Mixed Layer
Depth (MLD) but an increasing trend between the base of the mixed layer and euphotic zone at
Bermuda Atlantic Time-series Study (BATS; a stratified ocean) from 2011 to 2022.
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Fig 3: Multidecadal increasing surface-ocean temperature trend from Bermuda Atlantic Time-series Study (BATS) and how it
changed over the last 12 years.
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2. Aim:

To understand the mechanisms driving contrasting trends of phytoplankton above
and below the mixed layer depth from 2011 to 2022.

1. To develop a two-layered ecosystem box model.

2. To run the model at Bermuda (31°S) and compare model outputs with
observations.

3. To identify the drivers of the observed trends.
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3.1 Method:

mixing entrainment
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Fig 4. Schematic diagram of the two-layered ecosystem model. Light and dark blue shades represent the
surface and subsurface layers respectively. P, , Z, and N (P4 , Z4 and N) refer to the phytoplankton,
zooplankton and nutrient pools at the surface (subsurface) respectively. z,, and z,, refer to mixed layer
depth and euphotic zone respectively. Following Miller and Wheeler (2012) and Brock (1981), we model
daily averaged solar radiation at BATS site assuming clear sky conditions
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3.3 Method: model parameters

Table 1. P: used in our two-layered NPZ model, their meanings, values, units and supporting references.
Parameter Symbol  Value  Unit Reference
Solar constant SolarK 1373 Wm™? Miller and Wheeler (2012)
Atmospheric attenuation Atm 05 - Miller and Wheeler (2012)
PAR fraction Josr 041 — Fasham et al. (1990)
Light attenuation due to water Kaw 04 m! Fasham et al. (1990)
Surface chlorophyll-specific light i i Kap, 0028 m?(mgChla)~" Uitz et al. (2008)
Initial value for surface nutrient concentration No 0.1 INm~* i et al. (2020)
Initial value for nutrient concentration in the subsurface layer N, 25 INm~* A i etal. (2020)
Initial value for phytoplankton concentration at the surface P, 02 mmolNm™ Kantha (2004)
Initial value for zooplankton concentration at the surface Z, 025 INm~* A i et al. (2020)
Tnitial value for chlorophyll concentration at the surface Chl, 0.1 mgm™~* Anugerahanti et al. (2020)
Initial value for p ion at the Pe, 0.1 mmolNm Doney et al. (1996)
Initial value for ion at the Za, 0.05 = A i et al. (2020)
Initial value for p at the Chla, 013  mgm™® Anugerahanti et al. (2020)
Initial value for mixed layer depth Zm, 52 m Time-mean 2y, at BATS
Initial value for euphotic zone Zeo 250 m Anugerahanti et al. (2020)
Half-saturated for phytoplankton nutrient uptake at surface layer K, 07 mmolNm~* Hurtt and Armstrong (1999)
Initial slope of the P/I curve at surface layer a, 0025  day'(Wm™?)"! Fasham et al. (1990)
Phytoplankton mortality rate at surface layer m. 009 day™! Fasham et al. (1990)
Phytoplankton maximum growth rate at surface layer Venaz, 12 day™! Schartau and Oschlies (2003)
Zooplankton assimilation efficiency at surface layer Vs 075 — Fasham et al. (1990)
Maximum grazing rate at surface layer a, 2 day ! Oschlies and Gargon (1999)
Prey capture rate at surface layer € 1 (mmolNm~)"2day~'  Oschlies and Gargon (1999)
Zooplankton quadratic mortality rate cs 02 (mmoINm~*)~'day~"  Pasquero et al. (2005)
Dead zooplankton fraction immediately available as nutrient s 02 - Pasquero et al. (2005)
Zooplankton grazing substance fraction sinking to the subsurface layer  j, 0.2 — Pasquero et al. (2005)
Dead phytoplankton fraction immediately available as nutrient Hp 02 — Pasquero et al. (2005)
Mixing fraction coefficient fm 00055 — Fennel et al. (2001)
specific light i fici Kapy 0026  m*(mgChla)~* Uitz et al. (2008)

Initial slope of the P/I curve at subsurface layer ay 0256  day”(Wm™%)~! Schartau and Oschlies (2003)
Phytoplankton mortality rate at subsurface layer ma 005 day™' Schartau and Oschlies (2003)
Phytoplankton maximum growth rate at subsurface layer Vinazq 027 day™" Schartau and Oschlies (2003)

efficiency at layer Ya 09 - Schartau and Oschlies (2003)
Maximum grazing rate at subsurface layer ag 1575 day™! Schartau and Oschlies (2003)
Prey capture rate at subsurface layer € 1.6 (mmoINm~*)~day~  Schartau and Oschlies (2003)
Zooplankton quadratic mortality rate at subsurface layer ca 0.34 (mmolNm~*)'day~'  Schartau and Oschlies (2003)
Maximum chlorophyll-to-carbon ratio at surface layer O 001 gChlagC™* Jackson et al. (2017)

. . C:N Redfield ratio for phytoplankton Qe.n Lo mmolC(mmolN) ! Redfield (1958)
U n lverSI ty Molecular weight of Carbon M. 2 mgC(mmolC) ! —

C:Chl ratio at subsurface layer Xd 156 - Half of the modelled time-mean C:Chl ratio at surface layer
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Parameters, their meanings, values, units and supporting references.




4.1 Results: full signal and seasonality
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Fig 7: Chl-a vertical integration from model (green lines) and observations (black dots) at the BATS site



4.2 Results: interannual variability
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Fig 8: Interannual variability of Chl-a vertical integration from model (green) and observations (black) at BATS.
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Corr. (post 2011) = 0.85

Corr. (post 2011) =0.75



4.3 Results: mechanism
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Fig 9: Interannual variability of observational MLD (pink line).
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Fig 10: Interannual variability of Chl-a vertically averaged concentration from model (green).
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4.3 Results: surface mechanism
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4.3 Results: subsurface mechanism
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5. Take-home messages

We developed a two-layer NPZ model for stratified oceans, partitioning the euphotic zone
into two layers.

This model simulates the chlorophyll seasonal and interannual variability at two layers,
reproducing observed contrasting trends in chlorophyll between two layers over 2011-2022.
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Vertical integrated phytoplankton time series projected by our

NPZ model at BATS
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Fig 4: (a) Time series of deseasonalized phytoplankton integration above mixed layer (surface layer) from 1990 to 2100 from the two-layered NPZ
model, run from the historical records (1990 - 2014) and projected data (2015 - 2100) from BCC-CSM2-MR (orange), CESM2-WACCM (bluish
green), CMCC-CM2-SR5 (blue), CMCC-ESM2 (pink) and GFDL-ESM4 (dark-red) under the SSP 585 scenario. Straight lines indicate linear
regressions fitted to deseasonalized data from 2015 to 2100. The black line shows the five-model mean, and the grey shading represents +3
standard deviations around the mean. (b) As in (a) but for time series of deseasonalized phytoplankton integration between mixed layer and euphotic
zone (subsurface layer). (c) As in (a) but for results run based on projected data (2015 - 2100) under SSP126 scenario. (d) As in (b) but for

timeseries between mixed Iaier and euihotic zone isubsurface Iaieri.




Vertical integrated phytoplankton time series projected by our

NPZ model at HOTS
SSP 585 SSP 126
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Fig 5: As in Fig 4 but for results at HOTS




4. Results:

Station  Input data P, SSP585 P; SSP585 P SSP126 P, SSP126
[mmol N m“2yr_1] [mmol N m‘zyr_l] [mmol N m'2yr_1] [mmol N m_zyr_l]

Mean -0.032 (p< 0.05) 0.118 (p< 0.05) -0.005 (p< 0.05) 0.035 (p< 0.05)
BCC-CSM2-MR -0.043 (p< 0.05) 0.086 (p< 0.05) 0.026 (p< 0.05) 0.004 (p=0.37)
CESM2-WACCM  -0.031 (p< 0.05) 0.096 (p< 0.05) -0.026 (p< 0.05) 0.105 (p< 0.05)

BATS CMCC-CM2-SR5  -0.020 (p< 0.05) 0.108 (p< 0.05) -0.010 (p< 0.05) 0.064 (p< 0.05))
CMCC-ESM2 -0.027 (p< 0.05) 0.141(p< 0.05) 0.006 (p=0.01) -0.042 (p< 0.05)
GFDL-ESM4 -0.041 (p< 0.05) 0.159 (p< 0.05) -0.011 (p< 0.05) 0.041 (p< 0.05)
Mean -0.018 (p< 0.05) 0.079 (p< 0.05) -0.004 (p< 0.05) 0.020 (p< 0.05)
CanESMS5 -0.022 (px 0.05) 0.099 (p< 0.05) -0.001 (p=0.52) 0.013 (p=0.000)
CESM2-WACCM  -0.012 (p< 0.05) 0.052 (p< 0.05) 0.007 (p< 0.05) -0.016 (p=0.000)
CMCC-CM2-SR5  -0.020 (p« 0.05) 0.088 (p< 0.05) -0.011 (p< 0.05) 0.045 (p< 0.05)
CMCC-ESM2 -0.025 (pk 0.05) 0.096 (p< 0.05) -0.016 (p< 0.05) 0.059 (p< 0.05)

HOTS  EC-Earth3 -0.017 (p< 0.05) 0.072 (p< 0.05) -0.003(p=0.05) 0.014 (p=0.002)
EC-Earth-Veg -0.018 (p< 0.05) 0.070 (p< 0.05) -0.002(p=0.09) 0.010 (p=0.033)
IPSL-CM6A -0.028 (p< 0.05) 0.113 (p< 0.05) -0.009 (p< 0.05) 0.035 (p<x 0.05)
NorESM-MM -0.010 (p< 0.05) 0.063(p< 0.05) -0.002(p=0.08) 0.012 (p=0.002)
GFDL-ESM4 -0.015 (p< 0.05) 0.058(p< 0.05) -0.021(p< 0.05) 0.011 (p=0.000)

UﬂiVCrSity Table 2: Predicted surface and subsurface trends of deseasonalized phytoplankton integration
Of Exeter‘ from 2015 to 2100 using different mixed layer depth and light parameters from CMIP6 models

under SSP585 and SSP126 scenarios at BATS and HOTS.
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4.1 Results:
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