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The hardest thing to predict is the past.



Where we are now

Anthropogenic carbon emissions per year 10 Gt C
Carbon assimilated by the biosphere per year 100 Gt C

Carbon assimilated by phytoplankton 50% of total
Phytoplankton biomass 1% of total land biomass
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How we got here

Global annual marine primary production from the literature

1950

1970

l
1990

year of publication

2010

2030

Steeman Nielsen & Jensen, 1957
Gessner, 1957
Koblenz-Mishke, 1970

Platt & Subba Rao, 1975
Eppley & Peterson, 1979
Berger et al., 1987

Longhurst et al., 1995
Antoine et al., 1996
Behrenfeld & Falkowski, 1997
Melin, 2003

Behrenfeld et al., 2005
Westberry et al., 2008
Buitenhuis et al., 2013

Kulk et al., 2021

Adopted from Buitenhuis et al

. (2013)



Approaches to studying primary production

In situ
Incubation at sea under natural light conditions.
(Steemann Nielsen, 1952)

In vitro
Incubation under controlled light conditions.
(Platt i Jassby, 1976)

In silico
Computer implementation of primary production models.
(Gentleman, 2002)



In silico

Time evolution of phytoplankton biomass B in the ocean is modelled as:

0B . . .
—— = production — losses + advection + mixing

ot

Change in biomass is a result of production, losses and transport.



Mathematical description of the problem

82
0z2

o8 0B
ot waz

I(z,t) = exp( / w+keB(2 t)) dz’)
0

= (PP -17)B+ Mo

With respect to light I the problem has all the qualities one seeks in physics:

nonlinear 4+ nonlocal +



Many competitors
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I(z,t) = exp < - /Z (Kw + Z kB’Z—Bi(z’,t)) dz’)
0 i

With respect to light I the problem has all the qualities one seeks in physics:

nonlinear 4+ nonlocal +



What effect does turbulence have on photosynthesis?



Going back to 1935!

...vertical movements of the water must favour new growth of phytoplankton through the mizing which
carries nutritive substances to the illuminated zone from deep waters.

On the other hand a series of facts observed in recent years indicates that vertical mixing, besides having
a favourable effect, may have an unfavourable influence on the growth of the phytoglankton, because it

where they may utilize the light for
photosynthesis, and the nitrates and phosphates for growth and propagation.

(Gran & Braarud, 1935)



Sverdrup, Johnson & Fleming (1942)

It is obvious that the compensation point is determined by physio-
logical characteristics of the plants and may, therefore, be somewhat
different for different species, just as the optimum light intensity is not
the same for all species. The compensation point is independent of the
time during which photosynthesis and respiration have been measured
if the oxygen production per unit time remains proportional to the light
intensity and the oxygen consumption per unit time remains constant.
On these assumptions, the oxygen production dP in the short time interval
dt equals aldt, where a is a constant and I is the light intensity, and the
oxygeén consumption dR equals bdt where b is another constant. The
compensation point, I, is defined by

dP = dR,  giving I = g
The values of oxygen production P and consumption R in the time 7 are
(s 2l
P=a£ Idt, R =0bT.
The average light intensity in the time 7T is
T
I= 7 J; Idt.
Therefore, if P = R, it follows that
I=2_1.:
a
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Riley, Stommel & Bumpus (1949)

In considering the remainder of the problem, it is apparent that
equation (1) does not represent the rate of change of the plankton at
any particular depth in the presence of such phenomena as vertical
turbulence and sinking. Methods of handling such problems were
discussed by Sverdrup, Johnson, and Fleming (1942: 159-160), and
an equation was proposed in which the ‘local time change of con-
centration equals effects of diffusion minus advection plus biological
processes.” In the present case their equation is presented in the
form

ap 4 A dp Vu dp

2o —r—wh) — . B _TRT
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Sverdrup (1953) argument

In order that the vernal blooming of phytoplankton shall begin it is necessary that in the surface layer
the production of organic matter by photosynthesis exceeds the destruction by respiration. On certain
assumptions a “critical depth” is defined. The depth of a mized surface layer must be less than this
critical depth if the phytoplankton population of the mixed layer shall increase.




The classical Critical Depth Criterion (Sverdrup, 1953)




ICES Journal of Marine Science (2015), 72(6), 1892—1896. doi:10.1093 /icesjms /fsv110

Introduction to the Themed Section: ‘Revisiting Sverdrup’s Critical Depth Hypothesis’
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Revisiting Sverdrup’s critical depth hypothesis
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Kierstead & Slobodkin (1953)

THE SIZE OF WATER MASSES CONTAINING
PLANKTON BLOOMS!

By

HENRY KIERSTEAD:

Brown University
Providence, Rhode Island

AND

L. BASIL SLOBODKIN

Bingham Oceanographic Laboratory
Yale University
New Haven, Connecticut

ABSTRACT

If a phytoplankton population is assumed to be increasing logarithmically in a
mass of water surrounded by water which is unsuitable for the survival of the popu-
lation, it can be shown that there is a minimum critical size for the water mass below
which no increase in concentration of phytoplankton can occur. In a one-dimen-
sional water mass with leakage at both ends, this size, after a time of the order of
L?/8x*D, is given by

where L. is the length of the water mass, D the diffusion, and K the rate of increase
of the population. The corresponding size in a cylindrical water mass is given by



What effect does sinking have on photosynthesis?



Steele & Yentsch (1960) Journal of the Marine Biological Association of the UK
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Such features are normally explained by the sinking of plants and a sinking rate constant with depth s
used in the mathematical models of Riley, Stommel & Bumpus (1949) to explain some observed patterns
of wvertical distribution. However, on the basis of their model, the chlorophyll maximum must occur

above the compensation depth.



Shigesada & Okubo (1981) Journal of Mathematical Biology
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Self-shading of light by algae growing in a column of water plays an important role in the dynamics of algal
blooms. Thus without self-shading the algal concentration would increase more rapidly, making the nutrient
limitation too strong. Apart from the practical importance of self-shading, its inherent nonlinearity in the
growth dynamics leads to an interesting mathematical problem...



There are numerous mathematical papers on the topic...



Ishii & Tagaki (1982) Journal of Mathematical Biology

Diffusion Equation in Phytoplankton Dynamics 13

T )) < - 42(s).

It is clear that 2(0) < 0. By (4.5),

et
=y + D) -y < — <j Aopdr —

Therefore we have
2(5) < 20)e™ <0,
that is, .
J'MJ ox, % “rdxdi<2M forall  s>0. “8)
s Jdm

We see from (4.8) that for each 1 3 I, there exists f € [1 — 1,7] such that
f e, 1o)%e™" dx < 2M
and hence by putting T = 1, 5 = 1, in (4.5),

'[ blx, e dx < 2<M + f).
. ,

Thus we have (4.6) and therefore (4.7) by (4.5).
Now we note that  satisfies

b=y~ UG R, xRy, 49
00,0 = ‘;u(o, ). limux)=0 for teR,. (410
Using these and putting C; = — min{0,0%/4 + /(0)}, we have

1d
EEL, wyide = J‘M (10 — Ulauy? dx
< [uudly - [ wypdx — ZI R C.J Wi dx
Ja. s

<7?—u(ﬂ,1)’72'|. ufﬁd)+2j‘ ux‘dx+(,J gl dx.

Integrating this over [s, 7] with 0 < s < T and then letting 1 - o0, we get

r T
'f u(y.]’)zdr+l-{.j u;dxd,slj u(r,:)ldx»,c,fj widxdi
2Ja. 25 Js 2Ja. s dme

@11
if the right-hand side is finite. By (4.7), the second term on the right-hand side of
(4.11)is finite for any 0 < s < T, and the first term is finite for s = 0. Therefore we
see from (4.11) with s = 0 that [, u(x, )? dx < o for all 1 > 0. We sce thus that
(@.1Disvalid forall 0 < s < 7. By the same argument as the deduction of (4.6) and

1 H. Tshii and I, Takagi

(47) from (4.5) and (4.8), we see from (4.7) and (4.11) that (4.1) and
supJ‘ J wdxdi < o @12)
wn.ds Ja,

are valid.
By (4.9) and (4.10), we get

J. (4, + Ul dx = J Uttiy? dx
[N .

= w213 — j Uty dx — ZJ Ul Yo X
R

_ld(a o,
<33 (z w0, + J'R'uxxadx)
HJ xidxe ‘J i, d.
e, b
Using that
- Uz < Caanl < 32 + Cl,

where C; = max{w?/4 + 4, C,}, from the above inequality we get

_[ wpidx+ 2 (u(ﬂl)‘ J- u,,dx)
k.

< x.[ gl dx + zcgj wdx.
5. .
Multiply this by (r — s) with s > 0, integrate over [s, T] with 7 > s, and let n - oo
to obtain

'rf (6~ s dxdt + (T — r)(mu(ﬂ, ™+ [ uylx, nwx)
. 2 Ja.

T T
uw.u’dwj‘ l uidmu-zc;j [ (t — syt dxdt.  (4.13)
B s Ja. s e

We note that u(x, ) =0 as x - oo since pe L*(Qr) ~ C(@;) and hence that by
(4.10)
u(0,1)* = — ZI uu,dxéJ‘ wldx + j uldx.
A .
Therefore, substituting 7= s + 1 and T'= s + 2 into (4.13), we get (4.2) and (4. 3),
respectively, in view of (4.7) and (4.12). QE.

Proof of Theorem 2.3, Assertion (i). Denoting u(x, 1) = ¢**p(x, /) and recalling
(4.9) and (4.10), we compute that



Hsu & Lou (2010) STAM Journal of Applied Mathematics

Proof. Recall that d, (v, L, D) satisfies
{Dmx —vpe+ glle™)p = d.p in (0, L),

@ Dpu(0) - vp(0), Dull) — vpll), #>0 i (0,10)

(2) — e/, where 7 is some constant which will be chosen differently for
diffcent pusposes. Then, 1 satifes
1+ 0020 — Dty 4w | ——
. Dute-+ v(2n = D+ [ a0 = 1)+ glloe ™) ~d.| =0 im0 <z <L,
Duy—v(l—mpw atz—0,L.
Set 7 = 1 — CyD/?, where G, s some postive constant. to be chosen later. Then w
satisfes
oy [P ﬂ Ju, +al-Gi(1 - Sy ¢ gl =) —d] =0, 0< <L,
— (Cifrpw atz—0,L
Ltz e [n L) such that w(z") = masgese; w(z). Since wz(0) > 0, 2* # 0. 1 z* € (0,0).
Wee(r*) < 0 and wy(z*) = 0. By (7.9) we have
~Ci(1 = CiDJo?) + glhoe™) —d, > 0,
which is impossible if we choose C; = 2g(Iy) and D < v*/(4g(lg)). Therefore,
w(z) < w(L) for every € [0, L] Hence,

o) 30-Glyts

2z)  p0-S

W)~

Next, we choose 5 = 1+ CD/v?, where Cz > 0 s to be chosen later. By (7.8), w satisfies

_ {Du‘n ot + 282 it + E2) ¢ gl —d) 0, 0<z<l,
(T.10) =

(@ atz=0,L
Let 7, € [0, 1] such that w(z.) = minoc.cs w(z). Sinee w.(0) <0, 2, £0. Iz, € (0, L),
werlz) > 0 and w_(z.) — 0. By (7.10) we have
Co(1 + CoD[v) + g(doe™
which implics that d, > C. Choase Cy — glly). As d, < g(J), we must have . — Ls ie.
(z) > w(L) for every = € [0, L]. Therefore,

4.<0,

£l5) | g0

wlL)
Integrating (7.7) in (0, L) and dividing the result by (L), we have
L
- #lr) oy -
(7.11) j: =) [g(Foe =) —d,] dz = 0.

Set y = (L — )/ D. Then ¢ satisfies

- slay  PIL DY) gy,
(7.12) € W< U -5
We can rewrite (7.11) as
P (L — Dy a
(7.13) /; Lt D ) [y (Toe S 0P) — ] dy o

1 SEBI HSU AND YUAN LOU
By (7.12), we can apply Lebesgue dominant convergent theorem and pass to the limit in
(7.13) to obtai

Timp o[22 SLD o[y b0 D0) dy

ALy
o, = limpoor [T <L dy
el .
T Eeay
= glloc™5).
This completes the proof. o

Lemma 7.5. For any L > 0, there exists some vy > 0 such that if v < vy, then
L

(7.14) v, LD) > + [ glle™)dr

for suffciently large D,

Proof. Let s be the unique solution of

H
e g [ ol 1o, << I,
T

(715) .
b0 =brt) =0, [ waz—o

In particular, multiplying the first equation of (7.15) by v and integrating the result in
(0,E), we have

(716) [ st

o s

where the last strict inequality follows from the fact that. g(Joe™%%) is non-constant.
Set % =1+ 41/D in (7.6), we have

1 . Dy? + glloe ™)y dz
o T elPrygads

By direct caleulations,
L
/ S0 D2 4 gl )] dr

/;Ly + % [ [zg{l‘,fh‘).{z 7/:‘&‘ + 2[1;(1.,{*“)1;.] +0(1/D%
- /;Lw% [u[zg(lefh‘).{n/:w{,] +0(1/D%),

where the last equality follows from (7.16); Similarly,

rg(lne"""p)] +O/D?)

[m] = =




Du & Mei (2011) Nonlinearity
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To this end we fix a § € (0, ). Integrating the equation for j,
over [0, ] we obtain

Po,. namely, (3.9).

f [2a (¥) — d1n(x) dx

By lemma 3.4,as 1 — o0,

» ) "
[ puwras [ hawas—o.
at

" .

[ ewiwac<aw [ hwar—o.
‘Therefore we have

»
/k.mﬁ.mdnmn
B ’
Y Y T
1L ko [t
=il ve"bd:fff 20 () dx +0(1) (3.12)
[ PP I, Jy ¢ )

Since 0 < g,(x) < g(1) forallmand x € [0, h], we may assume, by passing to a subsequence,
2a(x) = 24(x) weakly in L2([0, A]) with [|g. |« < g(1). Hence letting n — 0o in (3.12), we

cbtain
a1 e o
gL e ar-£ M pma
Faes L, 2e) Ar‘l s
Letting 5 — h, we obtain
e /m..,,
o

gle ) dx.
Thatis.
1
d= f gy,
o
Since , is uniquely determined this way, we have
ot asD-0.
“This finishes the proof. o

Summing up the above discuss

n. we have the following result.

Theorem 38. Let d € (0. g(e™***)). Then for all small D > 0, the unique positive solution
Po(x) of (3.2)is strictly increasing in [0, h). Moreover, as D — 0,

WX, 01210y PoE) — DRI 0, (13

"
f Po()dx = 7./0, (314
o

where v, is uniquely determined by (3.11).

0n 2 nonlocal equation modeling phytoplankion 1

Proof. These conclusions follow directly from lemmas 3.1, 3
(3.13) is obtained; the other conclusions are obvious.
From the definitions we obtain

3.4and 3.7. We explain how

Pot) =5 luplwiin() = oD e F ().
Forx € [0, — 22]1n D], we have
DrieshieD) ¢ 1.

and hence (3.13) follows readily from lemmas 3.3 and 3.7. o

Let us observe that (3.13) and (3.14) imply that for small D, pp(x) behaves like a
&-function concentrating at x = h.
3.2. The large diffusion case

By theorem 6 in (8], d}, — + [ ¢(¢™*) dx as D — oo. From our discussions in section 2,
we know that for any fixed d € (0, £ [ g(e~+%) dx), (3.2) has a unique positive solution
P (x) for every large D. We now show that the asymptotic profile of pp(x) is given by the
following result
Theorem 39. As D — oo,

pox) ¢ uniformly on [0, ], (315

where c* is uniquely determined by the equation

T
d= [ gty ax
i e

Proof. Seting 1 (5) = Pofx) exp(—25), we have
1 . %)
i+ up = —[g(e RO E )l x e ©.h),
>t =D @.16)
1p(©) TD“"“”‘ W= —umm

Denote iip = up/|[upc. We then have

iy + L, *[gte ox kTl [} dp00) x0(35)

dlip.

[EXT))
0 = 7‘”,10» ) = —ua(h\
“The right-hand side of the first equation of (3.17) is clearly uniformly bounded on [0, k] for
all large D). Hence p and i are both uniformly bounded on [0, A] for large D. Thus along
any sequence of D going to 0o, we can choose a subsequence, say Dy such that D, — o,
1, converges in C' ([0, h]) to a function wo. Clearly uo satisfies (in the weak sense
nd hence clasical sene)

w=0 @b, w0

(318)

o(h) lulloe
‘which implies o = 1. It follows that @p — 1in C'([0, A]) as D — oo

the other hand, since i) satisfies (3.17), we can multiply the first equation of (3.17)
by exp(g5) and integrate it over [0, 4] to obtain

N
S e e S S i oxy
/Uete )~ dlipexp (33) dx = 0.

[m] = =




Many of those papers are not well known in the oceanographic community.



Huisman & Weissing (1994) and Weissing & Huisman (1994)
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We argue that the crucial measure for phytoplankton growth is not a critical depth but a critical light
intensity I%,... For each species 17, corresponds to the equilibrium light intensity at the bottom of a water

column when the species is grown in monoculture.



Competition
Imagine N phytoplankton species competing for light in the mixed layer.

For each species, I}, , is the critical light intensity, which corresponds to the light intensity at the mixed
layer base at steady state in monoculture.

B(t) — B}
min I}, .

Following Huisman & Weissing (1994) and Weissing & Huisman (1994) the species with the lowest critical
light intensity wins.

The competitive exclusion principle holds for light as a resource.



Husiman et al. (1999) Limnology and Oceanography
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A turbulent diffusion model shows that there are two different mechanisms for the development of
phytoplankton blooms. One of these mechanisms works in well-mized environments and corresponds to
the classical critical depth theory. The other mechanism is based on the rate of turbulent mizing. If turbulent
mizing is less than a critical turbulence, phytoplankton growth rates exceed the vertical mixing rates, and a
bloom develops irrespective of the depth of the upper water layer.



Huisman & Sommeijer (2002) Marine Ecology Progress Series
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. clear waters can sustain species with high sinking rates,

whereas turbid waters can sustain species with low sinking rates only.



Some interesting exchanges

Behrenfeld (2010)
Abandoning Sverdrup’s Critical Depth Hypothesis on phytoplankton blooms

Chiswell (2011)
Annual cycles and spring blooms in phytoplankton: don’t abandon Sverdrup completely

Behrenfeld et al. (2013)
Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring
plankton bloom

Chiswell (2013)
Comment on “Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic
spring plankton bloom”

Behrenfeld et al. (2013)
Reply to a comment by Stephen M. Chiswell on: “Annual cycles of ecological disturbance and
recovery underlying the subarctic Atlantic spring plankton bloom” by M. J. Behrenfeld et al. (2013)



Behrenfeld & Boss (2014) Annual Reviews of Marine Science
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But all this time nobody actually solved Sverdrup’s equation...



That is until Kova¢ et al. (2021) found the exact solution

o= (Wo( = 4e) + 4)

K
K, C

Br="Y—/—-1
(7 -1)
Ky

B}: 7(C_Zm)
kp

These simple looking solutions opened up new unexpected avenues!



Bio-optical bifurcation
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Competition
Imagine N phytoplankton species competing for light in the mixed layer.

The species with the deepest optically uncoupled critical depth wins!

B(t) — B} 1(Zm) — I1(C;)

max C; max C;
Following Huisman & Weissing (1994) and Weissing & Huisman (1994) the species with the lowest critical

light intensity wins. This species also has the deepest optically uncoupled critical depth. Therefore the
critical light argument is translated back to a critical depth argument.

Critical light and critical depth: Two sides, same coin.



Critical Depth Conservation Principle (Kova¢ et al., 2021)

d(KZ.)

=0
dt

The product KZ. is a constant of motion!

dée
= =0

When expressed as an optical depth the critical depth does not change over time.



The idea came from an observation made in a paper by Platt et al. (2003).



Platt et al. (2003) Proceedings of the Royal Society B
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For a given mized-layer depth, our analysis shows that there will be a preferred value of biomass to
which the simulated biomass will converge. Moreover, this preferred value is bounded, such that if the
initial biomass is less than this bound, the biomass will approach but not exceed it. On the other hand, if
the initial biomass is above the preferred value, it will be reduced to it within a finite number of steps. The
magnitude of the preferred value for biomass is lower the greater the mized-layer depth.



Does this hold when mixing is not strong?



nature Vol 439(19 January 2006|doi:10.1038/nature04245

LETTERS

Reduced mixing generates oscillations and chaos in
the oceanic deep chlorophyll maximum

Jef Huisman'*, Nga N. Pham Thi**, David M. Karl® & Ben Sommeijer*
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New results seem to indicate a positive answer!

As we have recently shown the compensation depth is governed by:
Zc
Oze kp /(93(2’) €
ot Ky +kpB(z) ot
0

And has the following constant of motion:

d
() =0



Time to mention nutrients?!
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Petersen (1975) The American Naturalist
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Petersen (1975) The American Naturalist

NUTRIENT 1
SPECIES 1

NUTRIENT 2

SPECIES 3

SPECIES 2

0 100 200 300 400

TIME (HOURS)

500



Set initial conditions

Ny Sp, VK, K g R

¥
Compute rate of growth
for each species

Compute population increase
for each species

Nie +1) = Mo F 0 Mo

']

Compute uptake of each mutrient

Bice + 1) 7 Syqey T Wiy

!

Compute population loss

N+ © Nl(t) - Ni(t)ni

Compute nutrient increase
from remineralization

Sice + 1) = Siqe) * EPAN

HORK]

[

Output

Sj, Ny

(Petersen, 1975)



Huisman & Weissing (1995) The American Naturalist
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Still, . Hence,
the spatial heterogeneity imposed by a light gradient is not sufficient to solve Hutchinson’s paradox
of the plankton.



Huppert et al. (2002) The American Naturalist
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Huppert et al. (2005)

Unusually, despite the persistent seasonal forcing, it is extremely difficult to generate blooms that are
both annually recurring and also chaotic or irregular (i.e. in amplitude) even though this characterizes

many real time-series. Instead the model has a tendency to ‘skip’ with outbreaks often being suppressed
from 1 year to the next.
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Can light effects alone be responsible for coexistence?



Lichtman & Klausmeier (2001) The American Naturalist
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Seasonal change in daylength may be one of the factors driving the seasonal succession ...



Absorption Spectra k;(\) (Normalized)
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Stomp et al. (2007) Ecology Letters
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Hutchinson’s paradox of the plankton inspired many studies on the mechanisms of species coexistence.
Recent laboratory experiments showed that partitioning of white light allows stable coexistence of red and
green picocyanobacteria. Here, we investigate to what extent these laboratory findings can be extrapolated
to natural waters. We predict from a parameterized competition model that the underwater light colour of
lakes and seas provides ample opportunities for coexistence of red and green phytoplankton species.



Luimstra et al. (2020) Ecology
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Can we advance ecological theory to predict how these differences in light-harvesting strategy affect com-
petition between phytoplankton species? Here, we develop a new resource competition model in which the
absorption and utilization efficiency of different colors of light are varied independently.



What about light and grazing?
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Light-dependent grazing can drive formation and
deepening of deep chlorophyll maxima

Holly V. Moeller01, Charlotte Laufkotter® 2'3, Edward M. Sweeney‘l'5 & Matthew D. Johnson®



Total biomass

Moeller et al. (2019) Nature Communications
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Inoue (1965)

Simillar problems in other fields

On the CO2-Concentration Profiles within Crop Canopies
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Simillar problems in other fields

Spiers & Gurney (2001)
Population persistence in rivers and estuaries

Pachepsky et al. (2005)
Persistence, spread and the drift paradox

Ezxamples of such systems are found in

. In streams, a long-standing question, dubbed ‘the drift paradox’, asks why aquatic insects
faced with downstream drift are able to persist in upper stream reaches.
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Simillar problems in other fields

Stone et al. (2007)
Seasonal dynamics of recurrent epidemics

New York Outbreak dynamics
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Norbert Wiener’s quote

The most fruitful areas for the growth of the sciences were those which had been neglected as a no-man’s
land between the various established fields. Science has been increasingly the task of specialists, in fields
which show a tendency to grow progressively narrower. Important work is delayed by the unavailability in
one field of results that may have already become classical in the next field. It is these boundary regions
of science that offer the richest opportunities to the qualified investigator.
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