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Parameter estimation

Parameter estimation describes the process of estimating the values of model
parameters with the goal of improving model performance or learning about the

processes associated with the parameters.
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A simpler concept: Uncertainty propagation
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uncertainty propagation

¢ In uncertainty or error propagation, we go from known input uncertainties to
output uncertainties.
© Uncertainty propagation provides probability distributions for outputs.

¢ Findings from uncertainty propagation can help us design better parameter
estimation experiments:
¢ design better sampling strategies (what needs to be observed?)
¢ inform which parameters we can realistically estimate
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Simple uncertainty propagation in the P-I model

y: photosynthetic rate
Uncertainty propagation in the P-I model

using
°* a=0.2£0.02
® Phax=50=£05

assuming uncorrelated errors.
The uncertainty is calculated as:
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x: irradiance

irradiance  photosynthetic rate uncertainty relative
(Wm=2) (mgCmgchl™* h71) (mg Cmgchl™t h™1) uncertainty

1 0.196 0.043 22.1%

25 3.161 0.533 16.9%

300 5.000 0.500 10.0%
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Uncertainty propagation summary
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uncertainty propagation parameter estimation
* We go from known input uncertainties ¢ We typically go backwards, using
to output uncertainties. observed output variations to infer
® Provides probability distributions for input parameter estimates.
outputs. ¢ Provides point estimates or probability
e We can use Monte Carlo-based distributions for input parameters.

sampling for more complex models
and non-Gaussian errors.
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maximum likelihood estimation, parameter optimization, etc.

N bey
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parameter estimation

® Simpler parameter estimation techniques often provide point estimates.

¢ These techniques aim to find the optimal parameter values, that minimize the
model misfit to the observations based on some measure.

¢ The terms “parameter optimization” and “maximum likelihood estimation”
describe a wide range of techniques that provide point estimates for parameters.
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parameter estimation for the P-I curve

¢ Most parameter optimization techniques minimize a function that quantifies the
model misfit to the observations. This function has many names: “objective
function”, “cost function”, “loss function” etc.

¢ Often the sum of squared errors is used:
a < - 2

¢ In maximum likelihood estimation maximizing a Gaussian likelihood is equivalent
to minimizing the sum of squared errors: p(Pops|#) ox e L)
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parameter estimation for the P-I curve

objective function:

10
6
- h :
T 4+
T 51 ¢t synthetic data: .
=
g ’ a=0.15 _
£ T g
o4 Pmax =6.0 < 7 E
o i >
E] = =
% b é © 10 ‘§
- S . p
@ + o g
£ 24 £ £
S F 3
0 4 —
% N Q:E 013
-E' 3
0 ! ! ! ! ! ,
0 50 100 150 200 250 300
irradiance (W m?)
1

0.0 0.2 0.4

0.6 0.8
a (mg € mg chl=* h=1 (W m=2)-1)

October 2025 J. Paul Mattern modelling primary production workshop slide 8



parameter estimation for the P-I curve

objective function:

max p
=1

® scipy.optimize.minimize
using L-BFGS—-B
(quasi-Newton-based
Broyden-Fletcher-Goldfarb-Shanno
algorithm, limited memory version
with bounds on parameters)

s
S

°

objective function value

® number of function evaluations: 51

Pmax (mg C mg chl=! h=1)

°
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Bayesian parameter estimation
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parameter estimation

¢ Bayesian techniques provide more than a point estimate of parameter values, they
estimate the posterior probability distribution.

© Bayesian parameter estimation requires the specification of prior distributions for
each parameter, which can be used to incorporate knowledge into the parameter
estimation process and can help alleviate indentifiability issues.

¢ We first build a Bayesian version of the P-I model using the pymc package.
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A simple Bayesian model in Python

Using pymc:

import pymc

with pymc.Model (coords={’obs’: np.arange (irr_data.size)}) as generative_model:
irradiance_sample = pymc.Data(’irradiance sample’, irr_data, dims=’obs’)
# priors

alpha = pymc.Normal (’"alpha’, mu=0.2, sigma=0.02)
pmax = pymc.Normal ('Pmax’, mu=5.0, sigma=0.5)

p_rate_mu = pmax * (l.0-pymc.math.exp(-alpha*irradiance_sample/pmax))

p_rate_sigma = pymc.HalfNormal (' photosynthetic rate sigma’, sigma=0.2)

p_rate = pymc.Normal (' photosynthetic rate’, mu=p_rate_mu, sigma=p_rate_sigma,
dims='obs’)

This model can then be used to sample the prior, generate synthetic data from fixed
parameters, fit data (synthetic or not) and get predictive samples from the posterior
after fitting.
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Posterior estimates in the P-I model
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a more complex Bayesian model

+++
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parameter estimation

© Bayesian models can become complex and used to estimate hundreds of
parameter values.

® Here, we go a step in that direction and estimate parameters of the P-l model («,
Pmax, and respiration rate R) for a large dataset recorded in 1975.
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the Bedford Basin 1975 dataset

Wil
Phyloplankton Productivity

f Experiments and B

§ Nutrient Measurements
In Bedford Basin, Nova Scotia,
from Sept. 1975 to Dec.1976

BEDFORD BASIN

44°41'N 63°39'W
= Irwin and T. Platt DATE: 09/09/75 SAMPLE DEPTH: 5 m SURFACE TEMP: 15.4°C
Light Intensity Specific Production Light Intensity Specific Production
M 'ne Ecology Laboratory W m=2 mg C(mg Chl a)~lhr=! W2 mg C(mg Chl a)~lhr-!
ar
Bedford Institute of Oceanography 7 33 HE) S
Fisheries and Marine Service 3-8 Lel 343 238
i 1201 0l84 1304 112
Deppartment of Fisheries and the Environment :
Dartmouth, Nova Scotia  B2Y 4A2 e 6137 35 Rt
3.1 0.14 3.6 0.27
2.0 0.01 2.5 0.17
1.3 0.01 1.9 .09

Incubation Temperature: 14.8°C

ng at m™? mg m~3
Mmoo Sz 0
. - . - Nitr: .
Fisheries & Marine Service M e Mirgen: o
b Silicate: 3.70
Technical Report No. 762 shosphate: 0129 salinity:  30.57 %,

Total number of cells: 0.8  x 10273 »

Total volume of cell: 6.45  ppm s
Mean volume of cells: 8050 L
90¢ Confidence Interval
lower upper
amg C(mg Chl @) thr™i(W m=2)"1  o.10 0.08 0.11
7% mg Clmg Chl @)~ lhr~?! -0.12 -0.19 -0.06
;: ng Clmg Chl a)~ihr=} 2.79 2.64 2.96

*280 u tube only

-
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a partial pooling model

Using data from 107 surveys, we want to obtain 107 parameter estimates of
6 = [or, Pmax, R] .

For our Bayesian model, we use a partial pooling approach, an intermediate approach
between estimating the parameters of each P-I curve independently and pooling all
data together.

no pooling complete pooling partial pooling
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posterior estimates

Bedford Basin survey 1 (1975-09-09)
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¢ The model was fit to a
data from 107 surveys.

¢ On a regular laptop
(AMD Ryzen 7 4750U),
model fitting takes about
65 seconds.
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posterior estimates
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® The dataset contains estimated values for the P-l model parameters. These values
were not used to inform the model.
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posterior estimates

® The parameter correlations have
intuitive meaning.

¢ Correlations between the estimated
parameters can hint at identifiability
issues.
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“average survey” estimates
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® The partial pooling approach provides parameter estimates that correspond to an
average survey in the dataset.

® These “average survey” estimates correspond well to the full set of estimates
made in 1975.
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summary

¢ Parameter estimation is essential for many models, and with growing model
complexity more processes will need to be parameterized.

¢ Parameter correlation is inevitable in complex models which can lead to parameter
identifiability issues.

¢ Understanding uncertainty in parameter estimates is important for better
understanding and communicating parameter estimation results.

® The Bayesian framework extends classical approaches by incorporating:

¢ Prior knowledge of parameters.

¢ Natural handling of non-Gaussian errors.

¢ Full probability distributions rather than point estimates, which can help identify
relationships between parameters and quantify uncertainty.
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Thanks! jmattern@ucsc.edu
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additional slides
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a partial pooling model

The pymc package can auto-generate model graphs laying out the random variables
and data used in the model:

normalized production

Normal

survey (107) x treatment (200) x replicate (2)
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