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Parameter estimation

Parameter estimation describes the process of estimating the values of model
parameters with the goal of improving model performance or learning about the
processes associated with the parameters.

(x , θ) y

model:

θ1 = α

θ2 = Pmax

x : irradiance
0

y : photosynthetic rate

0
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A simpler concept: Uncertainty propagation

(x , θ) y
uncertainty propagation

• In uncertainty or error propagation, we go from known input uncertainties to
output uncertainties.

• Uncertainty propagation provides probability distributions for outputs.
• Findings from uncertainty propagation can help us design better parameter
estimation experiments:

• design better sampling strategies (what needs to be observed?)
• inform which parameters we can realistically estimate
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Simple uncertainty propagation in the P-I model

Uncertainty propagation in the P-I model
using

• α = 0.2± 0.02

• Pmax = 5.0± 0.5

assuming uncorrelated errors.
The uncertainty is calculated as:

σpB =

√(
∂pB

∂α

)2

σ2
α +

(
∂pB

∂Pmax

)2

σ2
Pmax

α = 0.2

Pmax = 5

x : irradiance
1 25 300

y : photosynthetic rate
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irradiance photosynthetic rate uncertainty relative
(W m−2) (mg C mg chl−1 h−1) (mg C mg chl−1 h−1) uncertainty

1 0.196 0.043 22.1%
25 3.161 0.533 16.9%
300 5.000 0.500 10.0%
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Uncertainty propagation summary

(x , θ) y
uncertainty propagation

• We go from known input uncertainties
to output uncertainties.

• Provides probability distributions for
outputs.

• We can use Monte Carlo-based
sampling for more complex models
and non-Gaussian errors.

(x , θ) y
parameter estimation

• We typically go backwards, using
observed output variations to infer
input parameter estimates.

• Provides point estimates or probability
distributions for input parameters.
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maximum likelihood estimation, parameter optimization, etc.

(x , θ) y
parameter estimation

• Simpler parameter estimation techniques often provide point estimates.

• These techniques aim to find the optimal parameter values, that minimize the
model misfit to the observations based on some measure.

• The terms “parameter optimization” and “maximum likelihood estimation”
describe a wide range of techniques that provide point estimates for parameters.
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parameter estimation for the P-I curve

• Most parameter optimization techniques minimize a function that quantifies the
model misfit to the observations. This function has many names: “objective
function”, “cost function”, “loss function” etc.

• Often the sum of squared errors is used:

L(θ) = L

([
α

Pmax

])
=

n∑
i=1

(
Pobs,i − Pmax(1− e−αIi/Pmax)

)2

• In maximum likelihood estimation maximizing a Gaussian likelihood is equivalent
to minimizing the sum of squared errors: p(Pobs|θ) ∝ e−L(θ)
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parameter estimation for the P-I curve

objective function:

L(θ) = L

([
α

Pmax

])
=

n∑
i=1

(
Pobs,i − Pmax(1− e−αIi/Pmax)

)2
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parameter estimation for the P-I curve

objective function:

L(θ) = L

([
α

Pmax

])
=

n∑
i=1

(
Pobs,i − Pmax(1− e−αIi/Pmax)

)2

• scipy.optimize.minimize
using L-BFGS-B
(quasi-Newton-based
Broyden-Fletcher-Goldfarb-Shanno
algorithm, limited memory version
with bounds on parameters)

• number of function evaluations: 51
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parameter estimation for the P-I curve

objective function:

L(θ) = L

([
α

Pmax

])
=

n∑
i=1

(
Pobs,i − Pmax(1− e−αIi/Pmax)

)2
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Bayesian parameter estimation

(x , θ) y
parameter estimation

• Bayesian techniques provide more than a point estimate of parameter values, they
estimate the posterior probability distribution.

• Bayesian parameter estimation requires the specification of prior distributions for
each parameter, which can be used to incorporate knowledge into the parameter
estimation process and can help alleviate indentifiability issues.

• We first build a Bayesian version of the P-I model using the pymc package.
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A simple Bayesian model in Python

Using pymc:

import pymc
with pymc.Model(coords={’obs’: np.arange(irr_data.size)}) as generative_model:

irradiance_sample = pymc.Data(’irradiance sample’, irr_data, dims=’obs’)

# priors
alpha = pymc.Normal(’alpha’, mu=0.2, sigma=0.02)
pmax = pymc.Normal(’Pmax’, mu=5.0, sigma=0.5)

p_rate_mu = pmax * (1.0-pymc.math.exp(-alpha*irradiance_sample/pmax))
p_rate_sigma = pymc.HalfNormal(’photosynthetic rate sigma’, sigma=0.2)
p_rate = pymc.Normal(’photosynthetic rate’, mu=p_rate_mu, sigma=p_rate_sigma,

dims=’obs’)

This model can then be used to sample the prior, generate synthetic data from fixed
parameters, fit data (synthetic or not) and get predictive samples from the posterior
after fitting.
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Posterior estimates in the P-I model
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a more complex Bayesian model

(x , θ) y
parameter estimation

• Bayesian models can become complex and used to estimate hundreds of
parameter values.

• Here, we go a step in that direction and estimate parameters of the P-I model (α,
Pmax, and respiration rate R) for a large dataset recorded in 1975.
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the Bedford Basin 1975 dataset
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a partial pooling model

Using data from 107 surveys, we want to obtain 107 parameter estimates of
θ = [α,Pmax,R]

T.

For our Bayesian model, we use a partial pooling approach, an intermediate approach
between estimating the parameters of each P-I curve independently and pooling all
data together.

no pooling

θ1 θ2 . . . θn

. . .

complete pooling

θ

. . .

partial pooling

µ, σ

θ1 θ2 . . . θn

. . .
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posterior estimates
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• The model was fit to a
data from 107 surveys.

• On a regular laptop
(AMD Ryzen 7 4750U),
model fitting takes about
65 seconds.
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posterior estimates
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• The dataset contains estimated values for the P-I model parameters. These values
were not used to inform the model.
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posterior estimates
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• The parameter correlations have
intuitive meaning.

• Correlations between the estimated
parameters can hint at identifiability
issues.
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“average survey” estimates
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• The partial pooling approach provides parameter estimates that correspond to an
average survey in the dataset.

• These “average survey” estimates correspond well to the full set of estimates
made in 1975.
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summary

• Parameter estimation is essential for many models, and with growing model
complexity more processes will need to be parameterized.

• Parameter correlation is inevitable in complex models which can lead to parameter
identifiability issues.

• Understanding uncertainty in parameter estimates is important for better
understanding and communicating parameter estimation results.

• The Bayesian framework extends classical approaches by incorporating:
• Prior knowledge of parameters.
• Natural handling of non-Gaussian errors.
• Full probability distributions rather than point estimates, which can help identify

relationships between parameters and quantify uncertainty.

Thanks! jmattern@ucsc.edu
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additional slides
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a partial pooling model

The pymc package can auto-generate model graphs laying out the random variables
and data used in the model:

survey (107)

survey (107) x treatment (200) x replicate (2)
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