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What is photoinhibition?
Light damage to photosynthetic machinery,
resulting in decreases in photosynthetic rate.
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Does photoinhibition affect primary production?

* Mid-day reduction in photosynthetic energy conversion efficiency reduces quantum yield
by up to 25%

* Water column integrated carbon fixation reduced by 5-20% depending on mixing rate
Long et al. (1994), fluorescence

* Depth-integrated productivity reduced 6-7% during the spring bloom in the Ross Sea
Polynya on a clear day

Smyth et al (2017), model

* Photoinhibition occurred on 77% of 900 days between 10-14h (in lakes) and more
photoinhibition was correlated with lower GPP

Staehr et al (2015)

 Vertical Generalized Production Model (VGPM) with photoinhibition tends to
overestimate primary production at higher values and underestimate at lower values

Lobanova et al (2018)



Components of the PI curve
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The PI curve consists of 3 main regions

e Light-limited region

Light saturation
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The PI curve is a visualization of the biomass-normalized photosynthetic rate, PZ (mgC . mg chi aJ- h)
against irradiance, I (Watts . m?).




Pl curve formulations
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Pl curves with photoinhibition
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Models don’t describe a plateau in PI curve
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Photoinhibition is observed frequently

piCurve Package
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Objective: develop a new PI curve for photoinhibition

e Capture plateau in photosynthetic rate

e Simplifies to other Pl curve when no photoinhibition detected

* Photoinhibition does not change interpretation of other parameters
e Simple, geometric interpretation of photoinhibition parameter

e Parsimonious (as few parameters as possible)

* Parameters easy to estimate with data typically available




A New Parameterization of Photoinhibition

Use a saturating function of the reciprocal of irradiance to model photoinhibition:
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A New Parameterization of Photoinhibition

Use a saturating function of the reciprocal of irradiance to model photoinhibition:
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Testing models with a database of Pl experiments

Global map of Pl data samples collected between 1973 to 2022

Experiments performed over many decades by
scientists at Bedford Institute of Oceanography (B.
Irwin, T. Platt, W. G. Harrison, P. Dickie, C. Caverhill,

J. Anning, E. Devred, and many others).
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Compilation developed in collaboration with
E. Devred.

0
Longitude
Total plotted data samples: 3641

Table 1. Number of observed values of key parameters.

number_datasets number_datapoints number_pi_curve number_dates number_locations

80 108826 3641 1346 1304
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Table 2 | Statistical summary of 1808 photoinhibition model fits, ordered by increasing mean root mean squared error (RMSE)

Model P Allirradiance Excluding I <1,

Median Rzadj (%) Mean RMSE Mean rRMSE (%) Median Rzadi (%) Mean RMSE Mean rRMSE (%)
96.5 0.144 —5.860 64.6 0.161 —8.080
96.4 0.146 —4.620 64.2 0.163 —7.360
96.3 0.148 —3.340 57.7 0.172 —1.590
96.1 0.151 0.000 59.0 0.175 0.000
95.9 0.156 3.320 58.5 0.180 2.920
95.7 0.161 7.360 52.7 0.194 14.72
95.4 0.161 8.780 50.8 0.193 15.98
95.4 0.166 9.250 47.4 0.198 16.06
95.6 0.162 9.170 56.4 0.193 14.67
95.5 0.164 10.62 48.7 0.198 18.52
95.4 0.169 13.29 47.5 0.204 21.28
95.4 0.164 10.69 52.1 0.197 17.92
94.6 0.180 27.96 40.1 0.212 33.46
94.3 0.186 25.80 441 0.228 36.50
93.5 0.195 34.64 37.8 0.243 49.45
89.3 0.248 74.03 224 0.279 70.25
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Model p Excluding I <1,
Median R?,4;j (%) Mean RMSE Mean rRMSE (%)

Amirian 4 59.0 0.175 0.000
Exp—tanh 4 58.5 0.180 2.920
Smith®* 4 52.7 0.194 14.72
Bannister*®? 5 50.8 0.193 15.98
Prioul & Chartier’* 5 47.4 0.198 16.06
Exp-exp 4 56.4 0.193 14.67
Neale & Richerson® 4 48.7 0.198 18.52
Platt et al.™ 4 47.5 0.204 21.28
Tanh—exp 4 52.1 0.197 17.92
Blackman®? 4 40.1 0.212 33.46
Baly® 4 44 1 0.228 36.50
Peeters & Eilers™ 4 37.8 0.243 49.45
Steele™ 3 22.4 0.279 70.25
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Summary

e Our double-tanh model outperforms all the existing models on large
scale, reducing RMSE by 3 to 70 %.

* It has potential to more accurately describe photosynthetic rate since it
captures the Pl curve plateau.

 We can estimate all the parameters directly from the date, more
specifically Pmax and beta

* We the onset of photoinhibition from PI curves.
* Photosynthetic efficiency reduces by 25% at photoinhibition onset.
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