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Abstract Critical Depth Hypothesis is arguably one of the longest standing biophysical theories in
oceanography and is the earliest mathematically formulated theory aimed at explaining the phenomenon of
phytoplankton blooms. It introduces a depth horizon, termed the critical depth, at which the integrated primary
production from the surface to that depth equals the integrated loss terms within the same layer. In mixed layers
deeper than the critical depth, losses dominate photosynthesis and vice versa. A related horizon in case of week
mixing is the compensation depth, where the rate of photosynthesis matches the loss rate. In this paper, the effect
of phytoplankton light attenuation on the critical depth is examined, showing that it creates a bio‐optical
feedback in the model. A new differential equation, derived for the time evolution of the compensation depth
reveals that the light intensities at both the compensation depth and the critical depth are constants of motion.
Exact solutions for average and total mixed layer biomass at steady state are derived, and their stability
properties are analyzed. An existence of a bio‐optical bifurcation is shown, in which the mixed layer depth acts
as the bifurcation parameter and the critical depth is identified as the bifurcation point. Transients between
steady states are also explored, and it is shown that the relation between the initial condition and the final steady
state is paramount in determining whether a shallowing or deepening of the mixed layer will lead to a rise or a
decline in biomass over time.

Plain Language Summary The Critical Depth Hypothesis attempts to explain why and how
phytoplankton blooms occur. The theory introduces the concept of a critical depth, which is the depth at which
the total production of phytoplankton from the surface down to it equals the total losses. If the ocean's mixed
layer is deeper than this critical depth, the average light level is too low for photosynthesis to keep up with
losses. In areas of the ocean with weak mixing, there is a related concept called the compensation depth, where
the rate of photosynthesis exactly matches the loss rate at depth. This paper explores how phytoplankton's light
absorption affects its critical and compensation depths, creating a feedback loop. A new equation shows that
light levels at both the compensation and critical depths remain constant over time. The study also provides
exact solutions for the amount of phytoplankton in the mixed layer when the system is at steady state and also
demonstrates that the system can have a stable and an unstable steady state. It is shown that the stability of the
system is determined by how deep the mixed layer is in comparison to the critical depth.

1. Introduction
The pelagic ecosystem is an open, dissipative system that requires a steady supply of external energy (sunlight)
and matter (nutrients) to maintain it (Platt et al., 1984). As sunlight penetrates through the ocean surface, most of
its energy serves to heat the ocean. A portion of the photons, albeit small in absolute terms, ends up being used to
drive photosynthesises, which in the ocean is predominantly carried out by phytoplankton, the ocean's free‐
floating autotrophs (Williams & Follows, 2011). In photosynthesis, inorganic carbon gets assimilated and con-
verted to organic matter and the process is termed primary production in ecology (Regaudie‐de Gioux
et al., 2014). The energy stored in the newly formed organic matter is not only used by phytoplankton but is also
an energy source to fuel the rest of the ecosystem via trophic transfer (Duarte et al., 2013).

Global marine primary production is comparable to its terrestrial counterpart at the annual timescale (Field
et al., 1998), jointly totalling at around 100 gigatons per annum (Raven & Falkowski, 1999). It is precisely at the
global scale, where due to remote sensing technologies and state‐of‐the‐art models, which have been long in the
making (Longhurst et al., 1995; Platt & Sathyendranath, 1988), that our ability to calculate primary production
has reached highly advanced technical levels (Kulk et al., 2020, 2021). These advances in remote sensing have
paralleled great strides in large‐scale models of the marine ecosystem, within which primary production models of
varying degrees of complexity play a central role (Laufkötter et al., 2013).
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Nevertheless, there are unresolved questions: satellite‐based primary production models agree reasonably well
with each other at the global scale, converging to a value of around 50 gigatons per annum (Kulk et al., 2020,
2021; Sathyendranath et al., 2020), but there is less agreement on the magnitude and sign of the global trends seen
in satellite data (Westberry et al., 2023). There is also a high level of uncertainty in the future primary production
values and trends estimated from ecosystem models (Laufkötter et al., 2015).

In comparison to the global scale, at smaller spatial, and shorter temporal, scales, our ability to predict primary
production is arguably less satisfactory. The reason for this may be, and often is, attributed to the underlying
complexities of the marine ecosystem, with far too many state variables to estimate correctly the initial conditions
and the sensitivity of the dynamics of both the ecosystem (Cropp et al., 2014; Huisman et al., 2006) and the
physical environment (Mann & Lazier, 2005) to the initial conditions. These are the two ingredients, which render
prediction hard from a dynamical systems point of view (Strogatz, 2015). Therefore, even under the prevalent
assumption that the governing equations describing the temporal evolution of marine ecosystems are precise
descriptions of the intricate processes involved, there is still a limit on the predictive ability of models (Huisman&
Weissing, 2001), a standard trademark of chaotic systems (Ott, 2002).

Consequently, and despite the confidence in the exactness of model formulations, there is considerable debate in
the biophysical oceanographic community as to what is the dominant underlying mechanism governing the
temporal and spatial evolution of phytoplankton biomass and subsequently the carbon flux associated with pri-
mary production. This is strongly evident in recent debates found in the literature on ocean blooms, such as
Chiswell (2011), Behrenfeld et al. (2013a), Chiswell (2013), and Behrenfeld et al. (2013b). In many of these
studies, the crux of the discussion evolves around the mechanism for initiating phytoplankton blooms, as it is here
that quantitative and even qualitative features of models are put to the test. The discussion on phytoplankton
responses to external forcing is also relevant for addressing questions related to resilience and stability of
phytoplankton and primary production (Kovač et al., 2020) in a changing climate (Rocha, 2022), and when
investigating questions related to potential abrupt changes or tipping points in the Earth's biosphere (Lenton
et al., 2022).

In this context, theoretical investigations provide additional and complementary information on the interplay
between primary production and the factors that control it and on feedbacks between them. Historically, the
Critical Depth Hypothesis has provided a strong theoretical framework on which to explore the biophysical
mechanism of phytoplankton blooms (Sathyendranath et al., 2015) is explored. It traces its origins back to the
ideas of Gran and Braarud (1935), with the mathematical formulation first laid out by Sverdrup (1953). The
hypothesis postulates that a bloom is initiated once the mixed layer becomes shallower than the critical depth: a
depth horizon above which integrated production is higher than all the losses, hence the name. The process of
mixed‐layer shallowing typically occurs in spring, with the onset of stratification due to the increase in solar
heating and abatement of winter storms. Because in the midlatitudes blooms naturally take place in spring, it was
viewed as a good explanation of the bloom onset mechanism for quite some time, with Sverdrup's (1953) paper
coming to prominence in biophysical oceanography (Sathyendranath et al., 2015).

The Critical Depth Hypothesis is but one of a few candidate theories aimed at explaining phytoplankton blooms
(Chiswell et al., 2015). Other theories rivalling it, or better to say complementing it, are the Critical Light Hy-
pothesis by Huisman andWeissing (1994), the Critical Turbulence Hypothesis, by Huisman et al. (1999a), and the
Dilution Recoupling Hypothesis by Behrenfeld (2010). All the mentioned theories are based on well‐established
physical laws, such as conservation of mass and energy, along with well‐established biophysical parametrizations,
at the center of which is the response of primary production to light (Jassby & Platt, 1976; Kovač et al., 2017).
However, despite being based on the advection‐diffusion‐reaction equation describing the biomass distribution of
phytoplankton (Ryabov & Blasius, 2008), these hypotheses differ in the identification of the mechanism
responsible for bloom initiation in the ocean. The structure of the mathematical models allows for different dy-
namics to occur under different conditions, as evident and as correctly identified by the aforementioned authors.
From this perspective, the hypotheses are not mutually exclusive, but rather complement each other. The diver-
gence in the literature emerges at the stage of determining which mechanism predominates in the ocean.

The Critical Light Hypothesis due to Huisman and Weissing (1994) states that it is not the critical depth which is
relevant, but the critical light one would measure at the bottom of a mixed layer once a monoculture population
acquires a steady state. Another insight from the same authors is the Critical Turbulence Hypothesis (Huisman
et al., 1999a). Here, a mechanism for bloom initiation is revealed in the absence of strong mixing, enabling
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phytoplankton to accumulate near the surface. Finally, the Dilution Recoupling Hypothesis (Behrenfeld, 2010),
suggests that biomass accumulation can occur once the grazing pressure from zooplankton declines, due to a
reduction in phytoplankton‐zooplankton encounter rates. This typically occurs in autumn with storms initiating
strong mixing. The hypothesis makes the opposite prediction to Sverdrup's, in that it suggests that blooms can
occur when mixed‐layer depth increases.

Recently it was shown by Kovač et al. (2021) that the Critical Depth Hypothesis (Sverdrup, 1953) and the Critical
Light Hypothesis (Huisman & Weissing, 1994) can in fact be unified mathematically under a conservation
principle. The principle in question relies on the bio‐optical feedback mechanism, which occurs due to the
interaction of phytoplankton with the underwater light field, with phytoplankton close to the surface shading
phytoplankton below them, forcing the system toward a steady state. Such a feedback process is normally
included in all phytoplankton models, be they analytical or numerical, but very few authors have paid grave
attention to its consequences, apart from Platt, Sathyendranath, et al. (2003) and Edwards et al. (2004), among
others. In this paper, we demonstrate how the dynamical coupling of phytoplankton to the underwater light field is
central to the issue of bloom formation, and leads to unification of apparently divergent theories regarding the
underlying mechanisms. The combination of the concept of critical depth with the theory of dynamical systems
leads to new insights into system stability and transients, in which bio‐optical coupling plays a key role.

2. Mathematical Model
Let the z axis be positive downward, with the origin at the sea surface. Let B stand for phytoplankton biomass,
here expressed as chlorophyll concentration, such that at any given time, B(z, t) gives the biomass at depth, with
the description of biomass as a function of depth being termed the biomass profile. In the ocean, the biomass
profile is shaped by photosynthesis, losses, sinking, and mixing (Huisman et al., 2002). In generic dynamical
models of the biomass profile, these processes are usually encompassed in a differential equation for B written as

∂B
∂t
= (PB − LB)B −

∂F
∂z
, (1)

where PB stands for photosynthesis and LB for losses, both per unit biomass, and F is the flux, with contributions
from sinking and mixing, which can be expressed as

F = wB − M
∂B
∂z
, (2)

where w is the sinking speed and M is the mixing coefficient (Huisman & Sommeijer, 2002b). In general, all
parameters in the model can be depth‐ and time‐dependent.

The photosynthesis term PB gets its depth and time dependence due to irradiance I (Platt & Sathyen-
dranath, 1991). Photosynthesis also depends on nutrients, but the focus of this paper is on light dependence;
therefore, nutrient limitation of photosynthesis is not considered. The photosynthesis‐light relation is specified
with the following photosynthesis irradiance function:

PB(z, t) = pB(I(z, t)), (3)

which is a nonlinear function representing the photophysiological coupling of chlorophyll to the rate of carbon
assimilation in photosynthesis, termed primary production in ecology (Kovač et al., 2017). For brevity, we refer to
PB as the production term.

Irradiance gets attenuated with depth due to absorption and scattering of light by seawater and phytoplankton
(Kirk, 2011). When using the wording seawater, we implicitly assume all constituents which attenuate light that
are not associated with phytoplankton, such as water itself, allochthonous colored dissolved organic matter, and
particles. On the other hand, attenuation by substances that covary with phytoplankton (such as autochthonous
colored dissolved organic matter, and other biological particles) can be included in the phytoplankton term. We
then model the effect of phytoplankton on irradiance using the Beer‐Lambert law as follows:
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dI
dz
= − (Kw + kBB) I, (4)

where Kw is the diffuse attenuation coefficient of downwelling light associated with seawater and kB is the
specific attenuation coefficient of phytoplankton and covarying substances (Platt, Sathyendranath, et al., 2003).
Note that Kw could, in principle, include attenuation by any other substance that, along with water, may contribute
to a constant background attenuation. With this equation, a bio‐optical feedback is set up: biomass distribution
affects the underwater light field, which affects primary production and this feeds back to shape the biomass
profile (Shigesada & Okubo, 1981). At any given time, irradiance at depth is given by the vertical integral of the
above expression:

I(z, t) = I0(t)exp

⎡

⎢
⎢
⎣− ∫

z

0

(Kw + kBB(zʹ , t)) dzʹ
⎤

⎥
⎥
⎦, (5)

where I0(t) is surface irradiance and zʹ is a dummy variable for integration. For the remainder of the paper, we
assume constant surface irradiance I0(t) = I0.

3. Bio‐Optical Constants of Motion
As stated in (5), irradiance is calculated at depth as a function of time. An alternative view would be to look at a
predefined irradiance value and observe how it changes with depth over time, as a consequence of biological and
physical processes. Of particular interest is the compensation irradiance Ic, which is the irradiance at which
production matches losses (Huisman et al., 1999b):

pB (Ic) = LB. (6)

Due to light attenuation, irradiance declines with depth (5) and so does production (Kovač, Platt, Sathyendranath,
et al., 2016). Assuming production per unit biomass at the surface is larger than losses PB(0, t)> LB, which we
have to assume to obtain positive solutions; there will be a depth at which production will equal losses, termed the
compensation depth zc (Sverdrup, 1953) (Figure 1):

PB (zc) = LB. (7)

At this depth, irradiance will equal the compensation irradiance I(zc, t) = Ic. Complementarily, from Equation
(5), irradiance at the compensation depth equals:

I(zc) = I0 exp

⎡

⎢
⎢
⎣− ∫

zc

0

(Kw + kBB(z, t)) dz

⎤

⎥
⎥
⎦. (8)

By definition, production at the compensation depth equals losses. Given that production is determined only by
irradiance in model (3) implies that irradiance at the compensation depth cannot change over time, but the
compensation depth zc can, such that I(zc(t)) = Ic and zc = zc(t), while keeping the irradiance at the compen-
sation depth constant. Mathematically, the term inside the brackets in Equation (8) is conserved over time:

d
dt

⎡

⎢
⎢
⎣Kwzc(t) + kB ∫

zc(t)

0

B(z, t)dz

⎤

⎥
⎥
⎦ = 0. (9)

where integration over depth was carried out from zero to zc. Rearranging terms yields an equation for the time
evolution of the compensation depth as follows:
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dzc(t)
dt

= −
kB

Kw + kBB(zc(t))
∫

zc(t)

0

dB(z, t)
dt

dz, (10)

where the Leibnitz integral rule was applied. We observe that as the biomass
above the compensation depth grows, the compensation depth becomes
shallower, and vice versa. The system does so while keeping condition (9)
satisfied, implying Kwzc(t) + kB∫

zc(t)
0 B(z, t)dz is a constant of motion.

Following Equation (8), we can restate this condition as follows:

d
dt

I(zc(t)) = 0. (11)

Of primary interest in this paper is the behavior of the system under strong
mixing. A prototypical model in this case is that of a well‐mixed upper ocean
layer, with active mixing keeping the biomass uniform from the surface to the
mixed‐layer base Zm. The model for the time evolution of mixed‐layer
biomass is obtained from Equation (1) by vertical integration from the sur-
face to the mixed‐layer base (Kovač et al., 2021), under no flux boundary
conditions, to obtain the following:

dB
dt
=
1
Zm
∫

Zm

0

BpB(I)dz − LBB, (12)

where due to strong mixing, the biomass term is uniform with depth. We can
now easily calculate the evolution of the compensation depth by applying
(Equation 10) as follows:

dzc

dt
= − (

kB

Kw + kBB
dB
dt
) zc (13)

where biomass is taken out of the integral over depth. The derived equation
describes the temporal evolution of the compensation depth for the case of
strong mixing. Using this solution, we can explore whether the compensation
depth can reach a steady state z∗

c , where * marks steady state, mathematically
stated as

dzc

dt

⃒
⃒
⃒
⃒
z∗
c

= 0. (14)

Under steady state, the dB/dt term in Equations (12) and (13) equals zero. From Equation (12), at steady state, we
have a balance between production and losses in the mixed layer:

∫

Zm

0

pB(I)dz = LBZm, (15)

which is only possible if:

zc < Zm. (16)

Figure 1. Due to the attenuation of light, photosynthesis PB (blue curve)
declines with depth and has to at some depth equal the loss rate LB (red line).
This depth is called the compensation depth zc (gray line). Irradiance at the
surface is given by I0 (orange arrow) and irradiance at the compensation depth
by Ic (green arrow).
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To demonstrate the validity of this condition, following Huisman and Weissing (1994), we set (Equation 12)
equal to zero and partition the integral on the right‐hand side of Equation (12) as

∫

zc

0

pB(I)dz − LBzc = − ∫

Zm

zc

pB(I)dz + LB (Zm − zc). (17)

The left‐hand side is positive, given that by definition production is higher than losses above the compensation
depth, and hence, when depth integration of the production term is carried out from the surface to the
compensation depth, it is higher than the loss term integrated over the same depth range, making the left‐hand side
positive. To match the left‐hand side, the right‐hand side also has to be positive and for this to hold, the integral on
the right‐hand side has to be less than the loss term on the right‐hand side. Because the production profile is a
decreasing function of depth (Kovač, Platt, Morović, & Morović, 2016), for this to hold, the compensation depth
has to be shallower than the mixed‐layer depth to allow production to be less than the loss rate below zc and up to
Zm. This is precisely what condition (Equation 16) states.

Condition (Equation 16) has one subtle consequence that has perhaps not been recognized earlier in the literature.
Namely, it implies that the light intensity at the base of the mixed layer at steady state is lower than the critical
light intensity Ic. This further implies that the loss term dominates over the production term below the mixed layer
(z > Zm) under steady state as follows:

PB(z)< LB. (18)

Subsequently, biomass cannot be sustained below the mixed layer, formally justifying the common assumption in
mixed‐layer production models: that growth is unfavorable below the mixed layer. According to the analysis
presented here, it is no longer an assumption, but a consequence of the bio‐optical feedback in the mixed layer.

Figure 2. Graphical representation of the critical depth Zc (green line) as the depth at which vertically integrated production
(blue surface) equals vertically integrated losses (orange surface) in the mixed layer. When the mixed layer is shallower than
the critical depth, production outweighs losses, which favors growth. When the mixed layer is deeper than the critical depth,
losses outweigh production, which does not favor growth.
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Apart from the compensation depth, another depth horizon that is important for analyzing mixed‐layer dynamics
is the critical depth (Platt et al., 1991; Sverdrup, 1953). Critical depth Zc (Figure 2) is defined as the depth at which
mixed layer production equals mixed layer losses:

∫

Zc

0

pB(I)dz = LBZc. (19)

Comparison with Equation (15) shows that at steady state Zc = Zm, a result which was derived first by Platt,
Broomhead, et al. (2003). However, if at any particular time Zc ≠ Zm a dynamical response follows and biomass
either grows over time, for the case when the mixed layer is shallower than the critical depth, or declines over
time, for the case when the mixed layer is deeper than the critical depth. This behavior is well established in the
literature and forms the backbone of the Critical Depth Hypothesis (Sathyendranath et al., 2015).

What is less well known is how the critical depth evolves over time and it was only recently shown by Kovač
et al. (2021) for the model of Sverdrup (1953) that:

dZc

dt
= − (

kB

Kw + kBB
dB
dt
) Zc. (20)

Interestingly, this equation is of the same form as Equation 13 derived here, which is in fact the statement of the
Critical Depth Conservation Principle (Kovač et al., 2021). The principle states that the product of the diffuse
attenuation coefficient for downwelling light, for the mixed layer, and the critical depth itself, is a constant of
motion, mathematically stated as

d
dt
(Kw + kBB)Zc = 0. (21)

Because the light intensity at the critical depth Zc is:

I(Zc) = I0 exp(− (Kw + kBB)Zc), (22)

it follows from Equation (21) that I(Zc) does not change with time. Therefore, mixed layer biomass evolves over
time keeping the light intensity at the critical depth constant as follows:

d
dt

I(Zc(t)) = 0. (23)

Therefore, both the light intensity at the compensation depth (Equation 11) and the light intensity at the critical
depth (Equation 23) are constants of motion. The fact that only biomass enters both Equations (10) and (20)
implies that these expressions are independent of the actual form of the photosynthesis irradiance function that is
used in the biomass growth equation. The exact form of the photosynthesis irradiance function sets the quanti-
tative dynamics of biomass, but does not affect the validity of the conservation principle.

4. Steady State
Given the assumption that mixing is faster than the growth rate, biomass is uniform in the mixed layer. Therefore,
total biomass in the mixed layer at any time, labelled BZ , is given by:

BZ = BZm. (24)

From here on we will refer to B as average biomass and BZ as total biomass. A detailed discussion on the relation
between B and BZ is found in Behrenfeld and Boss (2014) and Freilich et al. (2021). As demonstrated in the prior
section, time evolution of average biomass is given by Equation (12). By acknowledging (Equation 24), this
equation is easily rewritten as:
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dBZ

dt
=∫

Zm

0

BpB(I)dz − LBBZ . (25)

Note the difference in the production terms between the equations for total (Equation 25) and average biomass
(Equation 12). In the equation for average biomass, the production term is divided by Zm, whereas in the equation
for total biomass, it is not. However, for a time‐independent mixed‐layer depth Zm ≠ Zm(t) and time‐independent
surface irradiance I0 ≠ I0(t), both Equations (12) and (25) are interchangeable because mixing keeps the biomass
uniform in the mixed layer (Equation 24). Using expression (Equation 24), we can write the production term in the
equation for total biomass as follows:

∫

Zm

0

BpB(I)dz =
BZ

Zm
∫

Zm

0

pB(I)dz. (26)

We can now expand BZ = BZm in each term in Equation (25) and recover Equation (12). Therefore, the two
equations are fundamentally the same, under the assumption that the mixed‐layer depth is constant over time.

Central to equations for the time evolution of biomass, be it average (Equation 12), or total biomass (Equation 25),
is the production term. As biomass changes, so too does the production term. Under constant surface irradiance,
the physical mechanism responsible for a change in the production term is light attenuation caused by biomass.
Increasing biomass in the mixed layer reduces the underwater light intensity at all subsurface depths, which then
reduces biomass‐specific production at each of those depths, and vice versa. This interplay is central to under-
standing the effect of bio‐optical feedback on system stability. To analyze steady‐state stability, we first find exact
expressions for steady‐state biomass, both average B∗ and total B∗

Z , where the asterisk * indicates steady state.

Using Equation (5) for irradiance at the mixed layer base I(Zm) (Figure 3), which for notational simplicity we
label as IZ = I(Zm) , reads as follows:

IZ = I0 exp(− (Kw + kBB) Zm). (27)

Upon taking the time derivative of this expression, we get:

dIZ
dt
= − (kBZm

dB
dt
) IZ . (28)

Eliminating time further gives us

dIZ
dB

= − kBZmIZ . (29)

A general form of this result was first derived byWeissing and Huisman (1994) (their Equation 22). By separation
of variables and integration from the initial state (characterized by B(0) and IZ(0)) till the final steady state
(characterized by B∗ and I∗

Z), we get:

B∗ =
Kw

kB
(

1
KwZm

ln
I0
I∗
Z
− 1), (30)

as the expression for steady‐state biomass. To be dimensionally consistent, the first term in the brackets has to be
dimensionless, which implies that the term ln( I0/ I∗

Z)/Kw has the dimension of depth. Comparison with the so-
lution for B∗ from Kovač et al. (2021) (their Equation 36) shows that the term that carries the dimension of length
must in fact be C, the optically uncoupled critical depth. In other words, we have:

C =
1

Kw
ln

I0
I∗
Z
, (31)
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which is the same as stating I∗
Z = I0 exp(− KwC) or that the steady‐state light

level corresponds to that at the critical depth for the case of no bio‐optical
coupling. This expression is consistent with the definition of the critical
depth given by Huisman et al. (2002) (their Equation 9). Therefore, by
combining the previous two expressions, for the biomass at steady state
we get:

B∗ =
Kw

kB
(

C
Zm

− 1), (32)

shown in Figure 4. It is important to note that this result is general and does
not depend on the specific formulation of the photosynthesis irradiance
function. It was first derived by Kovač et al. (2021) for a linear
photosynthesis irradiance function. Here, it is generalized to any
photosynthesis irradiance function. The production‐light relation, as
dictated by the photosynthesis irradiance function determines C and therefore
B∗. It is important to stress that C is the optically uncoupled critical depth, as
defined in Kovač et al. (2021) and not Zc as defined in Equation (19). More
precisely, C is the solution to:

∫

C

0

pB(I)dz = LBC, (33)

under:

dI
dz
= − KwI, (34)

implying bio‐optical coupling is not present in the model. Optically coupled
critical depth is then the critical depth as defined under bio‐optical coupling
given in Equation (4), in line with the definitions given in Kovač et al. (2021).
With no bio‐optical coupling, irradiance at C is simply:

I(C) = I0 exp(− KwC). (35)

With bio‐optical coupling (Equation 4), steady‐state irradiance I∗
Z is calculated from Equation (31):

I∗
Z = I0 exp(− KwC). (36)

From this, we observe that irradiance at the mixed‐layer depth at steady state equals the irradiance at the optically
uncoupled critical depth:

I∗
Z = I(C). (37)

This result was already demonstrated for the linear photosynthesis irradiance model by Kovač et al. (2021). Here,
it is generalized to any photosynthesis irradiance function. Additionally, due to Equation (23), irradiance at the
optically coupled critical depth does not change with time, implying I(Zc(t)) = I∗

Z . Furthermore, because
I∗
Z = I(C), we have

I(Zc(t)) = I(C). (38)

Therefore, it is I(C), which is in fact a constant of motion.

Figure 3. Irradiance at the mixed‐layer depth I(Zm) (blue arrow), calculated
from surface irradiance I0 (orange arrow) attenuated due to water and mixed‐
layer biomass (Equation 27), at steady equals the irradiance at the optically
uncoupled critical depth I(C) (red arrow), even though Zm ≠ C.
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Finally, having derived the solution for average steady‐state biomass, it is
straightforward to find the total steady‐state biomass, by simply multiplying
(Equation 32) with the mixed layer depth:

B∗
Z =

Kw

kB
(C − Zm), (39)

as shown in Figure 4. According to this equation, total steady‐state biomass is
proportional to the depth difference between the optically uncoupled critical
depth and the mixed‐layer depth (Figure 3). Expression (Equation 39) is
straightforward to interpret. We can rewrite it as follows:

kBB∗
Z = Kw (C − Zm). (40)

On the left‐hand side is the attenuation due to biomass in the mixed layer, and
on the right‐hand side is the attenuation due to the water column extending
from the optically uncoupled critical depth C to Zm. Because the irradiance at
C is constant and Zm ≠ C, in order to keep irradiance at the mixed‐layer base
equal to I(C) at steady state, mixed‐layer biomass adjusts so as to match the
total attenuation arising only from seawater from Zm to C. In case of a mixed
layer approaching zero the solution gives:

lim
Z
m
→0

B∗
Z =

Kw

kB
C. (41)

This is a finite quantity, in comparison to the solution for average steady‐state
biomass (Equation 32), which diverges when Zm goes to zero. Having found
the exact expressions for average and total biomass at steady state, we now
proceed to analyze their stability.

5. Bio‐Optical Bifurcation
Equation (12) describing the time evolution of average biomass can be written
as follows:

dB
dt
= f (B), (42)

where now the function on the right‐hand side equals

f (B) =
1
Zm
∫

Zm

0

BpB(I)dz − LBB. (43)

A plot of f (B) is given in Figure 5. At the point where f (B) = 0, we have a steady state. In our case, there are two
steady states: the trivial steady state B∗ = 0 and the nontrivial steady state B∗ ≠ 0, given by Equation (32). Either
can be stable or unstable. To classify them, we use linear stability analysis. Following Strogatz (2015), in linear
stability analysis, the condition for stability reads as follows:

df (B)
dB

⃒
⃒
⃒
⃒
B∗

< 0, (44)

and the condition for instability reads:

Figure 4. Plot of solutions for average B∗ (Equation 32) (orange curve) and
total mixed layer biomass B∗

Z (Equation 39) (blue line) at steady state as a
function of mixed‐layer depth Zm. When the mixed‐layer depth crosses the
optically uncoupled critical depth C (dashed line), both average and total
biomass go to zero. When the mixed layer goes to zero, average biomass
diverges, whereas total biomass goes to KwC/ kB. The slope of the steady‐state
solution for total biomass (blue line) is given by − Kw/ kB.
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df (B)
dB

⃒
⃒
⃒
⃒
B∗

> 0. (45)

According to these conditions, we observe that the derivative of f (B) de-
termines stability. The derivative of Equation (43) with respect to B is:

df (B)
dB

=
1
Zm
∫

Zm

0

pB(I)dz +
1
Zm
∫

Zm

0

B
dpB(I)
dB

dz − LB. (46)

To evaluate it, one could select a pB(I) function and carry out the differen-
tiation, which is straightforward to do. An alternative would be to recognize
that at steady state, average production equals losses (Equation 15); therefore,
the first and the third terms on the right‐hand side cancel out at steady state B∗,
leaving us with:

df (B)
dB

⃒
⃒
⃒
⃒
B∗
=

B∗

Zm
∫

Zm

0

dpB(I)
dB

⃒
⃒
⃒
⃒
B∗
dz. (47)

Whether or not the steady state is stable depends on the sign of this expres-
sion. Looking at Figure 5, we observe that for there to be a nontrivial steady
state, the function f (B) has to intersect the B axis at a point B∗, given by
Equation (32), implying the derivative of f (B) (Equation 46) has to be
negative at the nontrivial steady state and positive at the trivial steady state.

Let us first observe what happens at the trivial steady state, and to this end, let
us assume biomass approaches zero. Mathematically, with B → 0, the
middle term in Equation (46) vanishes, and we have:

lim
B→0

df (B)
dB

=
1
Zm
∫

Zm

0

pB(I)dz − LB. (48)

Physically, the vanishing of that term reflects the fact that at low biomass, the contribution to light attenuation due
to biomass is negligible. Now, if the mixed layer is shallower than the critical depth, average mixed‐layer pro-
duction is higher than the loss rate as follows:

1
Zm
∫

Zm

0

pB(I)dz > LB, (49)

and at zero biomass, the slope of f (B) will be positive (Figure 5). This renders the trivial steady state unstable and
opens the possibility for the existence of a nontrivial steady state. Using the chain rule in Equation (47) at the
nontrivial steady state gives us:

df (B)
dB

⃒
⃒
⃒
⃒
B∗
=

B
Zm
∫

Zm

0

dpB(I)
dI

dI
dB
dz. (50)

Following Equation (5), while acknowledging vertically uniform biomass in the mixed layer, we have

Figure 5. Plot of the f (B) function from Equation (42). Null points of f (B)
correspond to steady states: a stable steady state (orange circle) and an
unstable steady state (red circle). The situation on top arises when Zm < C
and B∗ > 0 given by Equation (32) is the stable state, whereas B∗ = 0 is the
unstable state. Once Zm > C, the steady states change stability properties with
B∗ = 0 now becoming stable and B∗ > 0 now becoming unstable.
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dI
dB

= − kBzI, (51)

making the previous expression negative, implying the nontrivial steady state is stable, according to Equation
(44). On the contrary, if the opposite of Equation (49) holds, namely:

1
Zm
∫

Zm

0

pB(I)dz < LB, (52)

The slope of f (B) at zero will be negative, and the trivial steady state will be the only stable state (Figure 5).

The nontrivial steady state is stable due to the bio‐optical feedback. Without it, the production term would be
linear in B, and f (B) would not intersect the B axis. The steady states would either be zero, in case the loss term
dominates, or infinity, in case the production term dominates. With the bio‐optical feedback, the biomass affects
the underwater light field, and for a given mixed‐layer depth, higher biomass implies lower irradiance and vice
versa. Consequently, lower irradiance implies less production. Therefore, the production term saturates with
respect to biomass, while the loss term keeps growing linearly with biomass. Change of biomass per unit time is
given as the difference between the two. This implies that the f (B) function has to cross the B axis at some point,
which is the nontrivial steady state B∗.

The same reasoning applies to the equation for total biomass, which we can now write as:

dBZ

dt
= F(BZ), (53)

where the F(BZ) function equals:

F(BZ) =
BZ

Zm
∫

Zm

0

pB(I)dz − LBBZ . (54)

This equation is obtained by multiplying (Equation 42) with the mixed‐layer depth Zm and using Equation (26).
From this, we observe that F(BZ) = f (B)Zm. Therefore, the presented analysis still holds with the difference
being in having B∗

Z in place of B∗.

The analysis above provides new insights into the deep connection between the critical depth criterion and the
stability of steady states. In this context, the critical depth criterion can be reinterpreted as the criterion for a
change in stability properties of the trivial and the nontrivial steady state, as presented in the bifurcation diagram
in Figure 6. With the critical depth criterion being met (Equation 49), the nontrivial steady state is stable. With the
critical depth criterion not being met (Equation 52), the trivial steady state is stable. In the jargon of dynamical
system theory with Zm crossing C the trivial steady state goes from a source to a sink, whereas the nontrivial
steady state goes from a sink to a source (Figure 6). The critical depth C is the bifurcation point for biomass, with
the mixed‐layer depth Zm as the bifurcation parameter.

The uncoupled critical depth C is also a bifurcation point for the optically coupled critical depth Zc (Figure 6).
While Zm < C, the optically coupled critical depth converges to the mixed‐layer depth at steady state, as
demonstrated in Kovač et al. (2021) by solving (Equation 20). Upon Zm crossing the optically uncoupled critical
depth C, biomass goes to zero and attenuation of light is caused only by seawater. This implies that the optically
coupled critical depth Zc has to match the optically uncoupled critical depth C, given that irradiance at the
optically coupled critical depth equals the irradiance at the optically uncoupled critical depth I(Zc) = I(C). The
only way in which this can be achieved is if Zc = C when Zm > C, as shown in Figure 6.
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6. Transients
Having found the exact expressions for average and total biomass at steady
state and having classified their stability properties, we now explore tran-
sients. By transients, we imply time‐dependent solutions, which may arise
when the system gets perturbed out of a steady state. Such perturbations arise
naturally in the ocean due to mixed‐layer deepening and shallowing (Mann &
Lazier, 2005).

First, assume that mixed‐layer biomass is at steady state and also assume zero
biomass below the mixed layer, due to unfavorable growth conditions. Let the
mixed‐layer depth be increasing with time as follows:

dZm

dt
> 0. (55)

Deepening does not affect total biomass directly (Freilich et al., 2021);
therefore Equation (25) still holds, such that:

∂BZ

∂t
= ∫

Zm(t)

0

BpB(I)dz − LBBZ , (56)

now with the recognition that Zm = Zm(t). Due to the change in Zm(t), the
production term gets affected and production now changes with time as
follows:

d
dt
∫

Zm(t)

0

BpB(I)dz =
dB
dt
∫

Zm(t)

0

pB(I)dz + B ∫

Zm(t)

0

dpB(I)
dt

dz

+ BpB [I(Zm(t))]
dZm(t)
dt

, (57)

where biomass comes out of the integral sign due to it being constant with depth in the mixed layer.

The first term on the right‐hand side arises simply due to the change in biomass with time. Looking more closely
at the integrand in the second term on the right‐hand side, we have:

dpB(I)
dt

=
dpB(I)
dI

dI
dt
, (58)

where the chain rule was applied. Due to dpB(I)/dI > 0, (Platt et al., 1977) the first term in the product is always
positive. To arrive at the sign of the second term in the product, we note it is easily calculated by taking the time
derivative of Equation (5) to obtain:

dI
dt
= − (kBz

dB
dt
) I, (59)

which can be both positive or negative, depending on the sign of dB/dt. Using the derived expressions and taking
the dB/dt term out of the integral enables us to rewrite the second term in Equation (57) as follows:

B ∫

Zm(t)

0

dpB(I)
dt

dz = −
dB
dt
∫

Zm(t)

0

dpB(I)
dI

(kBBI) z dz. (60)

Figure 6. Bifurcation diagram for total biomass BZ and the optically coupled
critical depth Zc, with the mixed‐layer depth Zm as the bifurcation parameter.
For Zm shallower than the optically uncoupled critical depth C, zero biomass is
the unstable steady state (red line) and B∗ > 0 given by Equation (39) is the
stable steady state (orange line). Once Zm becomes deeper than C, zero biomass
becomes the stable steady state (orange line). Mixed‐layer depth itself is the
stable steady state for Zc (blue line) when Zm < C, with C as the unstable steady
state (red line). When the mixed‐layer depth crosses C, it becomes the stable
steady state (blue line).
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Now we observe that the second term in Equation (57) arises due to the change in the light field caused by a
change in biomass. All the quantities in it are positive, but given the minus sign, the contribution to the change of
the production term depends also on the sign of dB/dt, as expected. Without the bio‐optical feedback, which
corresponds to kB = 0, this term is zero and there is no feedback of biomass on the light field and subsequently on
the production term.

The final term on the right‐hand side of Equation (57) arises due to mixed‐layer deepening. Mathematically, it is a
result of the application of the Leibnitz integral rule. This term does not appear when the mixed‐layer depth is
constant with time. It reflects the increase in total mixed‐layer production resulting from an increase in mixed‐
layer depth. It is positive, implying it acts to increase total mixed‐layer production during deepening.

Whether or not the resulting derivative of total mixed layer production with time will be positive or negative
depends on the sum of the three terms in Equation (57). The factor determining this is the sign of dB/dt. When it is
positive, the first term on the right‐hand side of Equation (57) is positive and the second one is negative, reflecting
the fact that light attenuation is increasing as a result of increasing mixed‐layer biomass. However, when it is
negative, the first term is negative and the second one is positive, because light attenuation is decreasing as a result
of decreasing mixed‐layer biomass. Whether or not dB/dt will be positive or negative, can be explored by
studying the equation for average mixed‐layer biomass, which now gets augmented to account for the effect of
deepening.

During deepening, average biomass gets diluted due to entrainment of water from below the mixed layer
(Behrenfeld & Boss, 2014; Platt, Sathyendranath, et al., 2003). To account for this, an additional term appears in
the equation for the time evolution of average biomass (Equation 12):

∂B
∂t
=
1
Zm
∫

Zm

0

BpB(I)dz − LBB −
1
Zm

dZm

dt
B. (61)

Therefore, an asymmetry between Equations (56) and (61) arises. To analyze the consequences of this asym-
metry, we explore the response of average and total biomass in the following scenario.

Assume the system is at steady state with mixed‐layer depth equal to Z0 (Figure 7) and the corresponding average
biomass given by Equation (32) with total biomass given by Equation (39). Deepening of Zm will then change the
steady state, and following Equations (32) and (39) in both cases, the new steady state biomass is Bd, where the
subscript stands for deep, and will be lower in biomass, both average and total biomass, given that the final mixed‐
layer depth is deeper than the initial Zd > Z0 (see also Figure 6). If the final mixed‐layer depth is shallower than C,
the new steady state is stable (Figure 6). Therefore, biomass is attracted toward the new steady state with average
and total biomass both declining during the transition to a deeper mixed layer. However, if the system is not
initially at steady state, biomass may either decline or increase with time, depending on the initial condition in
relation to the final steady‐state biomass. When B0 < Bd, biomass may be increasing even during deepening, a
process, which classically is expected to occur only during shallowing.

To explore the dynamical response to shallowing, assume that mixed‐layer depth decreases with time as follows:

dZm

dt
< 0. (62)

Shallowing does not affect average biomass directly; therefore, Equation (12) still holds:

∂B
∂t
=

1
Zm(t)

∫

Zm(t)

0

BpB(I)dz − LBB, (63)

again with the recognition that Zm = Zm(t). Although average biomass is not affected directly by shallowing, the
production term is, and therefore, subsequently, biomass is affected. To see how the production term changes in
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response to shallowing, we can explore this change in the samemanner as was done with expression (Equation 57)
as follows:

d
dt
∫

Zm

0

BpB(I)dz =
dB
dt
∫

Zm(t)

0

pB(I)dz + B ∫

Zm(t)

0

dpB(I)
dt

dz − BpB [I(Zm(t))]
⃒
⃒
⃒
⃒
dZm(t)
dt

⃒
⃒
⃒
⃒, (64)

with the difference that now the time derivative of the mixed‐layer depth has a negative sign and to emphasize it
we use the absolute value of the change in mixed‐layer depth per unit time. The third term on the right‐hand side
now reflects the decrease in total mixed‐layer production resulting from a decrease in mixed‐layer depth. It is
negative, implying it acts to decrease total mixed‐layer production during shallowing. This occurs due to
detrainment of biomass from the mixed layer during shallowing. The biomass which now finds itself below the
mixed layer no longer contributes to mixed‐layer production (Edwards et al., 2004).

In this line of reasoning, total biomass is affected by shallowing directly, because a portion of biomass gets
detrained from the mixed layer and the equation for total biomass (Equation 25) now becomes (Freilich
et al., 2021)

∂BZ

∂t
= ∫

Zm(t)

0

BpB(I)dz − LBBZ −
1
Zm

⃒
⃒
⃒
⃒
dZm

dt

⃒
⃒
⃒
⃒ BZ . (65)

Figure 7. Response of mixed‐layer biomass to changing mixed‐layer depth under Zm(t)< C. The system is initially at steady
state with average biomass B0, given by Equation (32). During mixed‐layer deepening (orange line), biomass changes with
time. After deepening stops, the system acquires a new steady state with average biomass Bd , which following Equation (32) is
less than B0. Following Equation (39), the same argument holds for total biomass. Response of mixed‐layer biomass to
shallowing is also shown (blue line). After shallowing stops, the system acquires a new steady state with average biomass Bs,
which following Equation (32) is higher than B0. Following Equation (39), the same argument holds for total biomass.
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Therefore, once again, an asymmetry arises between Equations (63) and (65). Whereas during deepening it was
the equation for average biomass in which an additional term appeared, now it is in the equation for total biomass
that an additional term appears. Here too, in order to analyze the consequences of the asymmetry in the equations
for average and total biomass, we explore the response of biomass in the following scenario.

Assume again that the system is at steady state when mixed‐layer depth equals Z0 (Figure 7), that the corre-
sponding average biomass is given by Equation (32), and total biomass given by Equation (39). Shallowing of the
mixed layer will then change the steady state Bs, both average and total biomass, where the subscript stands for
shallow, because Zs < Z0 (see also Figure 6). Because the new steady state is stable, the system will tend toward
this new steady state and average and total biomass will both increase with time. However, if the system is not
initially at steady state, biomass may either decline or increase with time depending on the initial condition in
relation to the final steady state. When B0 > Bs, biomass may be decreasing even during shallowing.

The response of the system to both deepening and shallowing can be interpreted using the notion of the optically
coupled critical depth. The optically coupled critical depth will converge toward the mixed‐layer depth in both
cases. If initially at steady state, the optically coupled critical depth equals the mixed‐layer depth Zc = Z0.
During shallowing, Zc will change and once the mixed layer settles onto the new depth Zs, the optically coupled
critical depth will continue changing with time until it too equals this new mixed layer depth Zc = Zs.

The response to deepening proceeds along the same lines with the optically coupled critical depth now converging
toward Zd. If initially at steady state the optically coupled critical depth will be equal to the mixed‐layer depth
Zc = Z0. During deepening, Zc will change, and once the mixed layer settles onto the new depth, Zc will continue
changing with time until it too equals this new mixed‐layer depth. At this point, the system has reached steady
state with Zc = Zm and biomass being equal to Bd.

7. Discussion
Phytoplankton are at the mercy of their physical environment, surviving in the euphotic zone, the well‐lit up-
permost part of the ocean where sufficient light is available for photosynthesis (Kirk, 2011; Mann &
Lazier, 2005). Gravity causes phytoplankton to sink, therefore effectively acting to remove nonbuoyant phyto-
plankton from the euphotic zone (Huisman & Sommeijer, 2002b). Complementary to sinking is the process of
turbulent mixing, which may act twofold. In case of weak mixing, it may suppress the sinking tendencies of
phytoplankton, thereby aiding phytoplankton cells to stay in the euphotic zone (Huisman & Sommeijer, 2002a),
which is favorable for primary production. However, in case of strong mixing, say caused by deep convection,
phytoplankton cells may get dragged to a great depth, where they experience low light intensities, subsequently
reducing primary production in the mixed layer (Franks, 2015). In the ocean, mixing depth and mixing intensity
naturally vary depending on the source of turbulence (Franks, 2015).

In his original paper, Sverdrup (1953) assumed instantaneous mixing, with the mixed‐layer depth as the only
parameter associated with mixing. Therefore, the only question such a model could answer is how deep active
mixing could be, while still keeping production above the loss rate, because there was no parameter to vary the
intensity of mixing. This meant that when the mixed layer was shallow, such that light levels in the mixed layer
were sufficient for production to surpass the loss rate, the conditions were met for bloom initiation, given that no
other mechanism existed in the model to trigger a bloom. It also meant the converse. With deep mixing, average
light levels were low in the mixed layer and the loss rate surpassed production, preventing bloom initiation. The
mixed‐layer depth at which the production in the layer matched corresponding losses was defined by
Sverdrup (1953) as the critical depth.

Almost half a century later, Huisman et al. (1999a) extended Sverdrup's theory by taking into account varying
mixing intensities and demonstrated that under weak mixing production can exceed the combined effects of
mixing and losses, enabling phytoplankton to be sustained in the water column even in case of no stratification.
They also included the effect of sinking (Huisman et al., 2002). In the case of strong mixing, predictions given by
Huisman et al. (1999a) agreed with those of Sverdrup (1953). In this way, the model of Sverdrup (1953) can be
viewed as the particular case of the Huisman et al.’s (1999a) model for strong mixing.

The now standard mathematical framework used by Huisman et al. (1999a), which dates back to the work of Riley
et al. (1949), is to model the processes of sinking, mixing, production and losses, with an advection‐diffusion‐
reaction equation for the phytoplankton biomass as a function of depth (Ryabov & Blasius, 2008). The
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advection and diffusion terms account for sinking and mixing, whereas the reaction terms account for biological
processes and come with a number of parametrizations (Franks, 2002). The key parametrization from the
standpoint of optics is the photosynthesis irradiance function (Kovač et al., 2017). Mathematically, it relates light
availability at depth to primary production at depth and enables the growth of phytoplankton in the model.

To calculate production, a light penetration model is needed. In the light model, surface light, and optical
properties of seawater and other optically important substances in the water, including phytoplankton, at all
depths above a given depth determine the light intensity at that depth, making the system nonlocal. A light model
in which biomass affects the underwater light field adds an integral equation to the advection‐diffusion‐reaction
equation for biomass. The two equations are coupled via the effect of phytoplankton on the attenuation coeffi-
cient, so that changes in biomass affect the underwater light field and subsequently production, which then feeds
back onto biomass. Without this coupling, biomass would not affect the underwater light field, and it is precisely
the dynamical consequences caused by the effect of biomass on the underwater light field that are often ignored in
many models, but are the main focus of this study.

Dynamically, the bio‐optical feedback creates a nontrivial (biomass greater than zero) steady state for the mixed‐
layer biomass (Figure 5), which otherwise would not exist and is therefore in itself an important distinction from a
model not having a steady state. The existence of such a steady state was first recognized by Platt, Sathyendranath,
et al. (2003), and its dynamic consequences were studied further in Platt, Sathyendranath, et al. (2003), Edwards
et al. (2004), and Kovač et al. (2020, 2021). In the work of Kovač et al. (2021), an exact expression for the
nontrivial steady state was derived for a model with a linear photosynthesis irradiance function, but which is in
other respects same as the model in this paper.

Here, it was demonstrated that the steady‐state solution is not dependent on the specific form of the photosyn-
thesis irradiance function and is general for all functions, linear and nonlinear. Mathematically, the exact form of
the photosynthesis irradiance function determines the value of C in the expression for steady‐state biomass
(Equation 32), but does not alter its form. In that sense, it is valid for the whole class of photosynthesis irradiance
functions. The steady‐state solution for total mixed‐layer biomass was also derived here (Equation 39), which was
thus far unknown. By doing so, the issue of average biomass diverging for mixed‐layer depth going to zero was
remedied, given that the steady‐state solution for total biomass (Equation 39) does not exhibit the same divergent
behavior.

The Critical Depth Conservation Principle, whereby the product of the attenuation coefficient and the critical
depth is a constant of motion, was also discovered for a linear photosynthesis irradiance function by Kovač
et al. (2021). Here, it was demonstrated to hold irrespective of the photosynthesis irradiance function used in the
model. This was demonstrated simply by observing changes in light intensity through the water column in a novel
fashion. The standard way to do this is to observe how light intensity changes at a given depth. However, because
irradiance declines with depth, the I(z) function is a bijection, such that for each irradiance value, a corresponding
depth value can be assigned and how that assigned depth changes over time can be observed. This reasoning also
led to the derivation of a general equation for the time evolution of the compensation depth (Equation 10), thus far
unknown. The equation demonstrates that the integral biomass above the compensation depth changes with time
while keeping the irradiance at the compensation depth constant. In this case, the integral of the attenuation
coefficient from the surface up to the compensation depth is a constant of motion (Equation 9). The derived
constants of motion are another direct consequence of the bio‐optical feedback, which arises due to the attenuation
of light caused by phytoplankton.

In the model of Sverdrup (1953), the bio‐optical feedback was not accounted for and the underwater light field
was not affected by phytoplankton. Therefore, the argument of growth/decline of biomass was framed solely in
terms of the relation between the critical depth and the mixed‐layer depth. The same argument was also framed by
Huisman andWeissing (1994) andWeissing and Huisman (1994) in terms of the critical light intensity. However,
in their model, the underwater light field was affected by biomass. Recently, the two approaches were merged in
the work of Kovač et al. (2021) where it was shown that the critical light intensity equals the light intensity at the
critical depth at steady state. In the model of Kovač et al. (2021), the underwater light field is affected by both
seawater (and any other, fixed, background attenuation by substances that do not covary with phytoplankton) and
biomass.
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It is worth stressing that the effect biomass has on the underwater light field also modulates bloom dynamics in the
following manner. The bloom may be triggered or terminated by both bottom‐up or top‐down controls. The
bottom‐up would be nutrient limitation, whereas the top‐down would be zooplankton grazing (Lynam
et al., 2016). To model either top‐down or bottom‐up controls, the system has to be extended to at least two
dimensions, with the second arising from the equation for nutrients or zooplankton. When both limitations are
taken into account, the system is extended to three dimensions, the classical example of which are the nutrient‐
phytoplankton‐zooplankton models (Fasham et al., 1990; Franks, 2002; Franks et al., 1986). The interplay be-
tween nutrients, phytoplankton, and zooplankton regulates the bloom mechanism and causes bloom onset or
termination. It would be difficult to classify light limitation as either bottom‐up or top‐down control, and could be
labelled self‐limitation. In this respect, the bio‐optical feedback is a self‐regulating mechanism for bloom initi-
ation and termination, with the optically uncoupled critical depth being a bifurcation point for the mixed‐layer
depth (Figure 6). In the jargon of dynamical systems theory, bio‐optical feedback causes the existence of a
stable sink fixed point when the critical depth criterion is met. Mixed layer crossing the optically uncoupled
critical depth amounts to the annihilation of the stable sink fixed point, with the trivial steady state being the only
attractive attracting fixed point left. For mixed layers that extend beyond the optically uncoupled critical depth,
biomass eventually goes to zero, because there is no steady state with positive biomass. This occurs because the
average light level in the mixed layer, with no biomass present, is only controlled by the mixed‐layer depth, and
drops below the light level needed for production to match the loss rate.

Apart from having the control of the average light level in the mixed layer, the process of mixed‐layer deepening
also has an effect on the loss rate, as pointed out by Behrenfeld (2010). Due to biomass dilution upon deepening,
the phytoplankton‐zooplankton encounter rates are diminished, causing a reduction in grazing pressure, which
may lead to a bloom onset even during deepening (Behrenfeld & Boss, 2014, 2017).With the bio‐optical feedback
in place, dilution also reduces the attenuation coefficient. This may then lead to an increase in the average light
level in the mixed layer and whether or not this will consequently lead to an increase in average production and
subsequently biomass depends not only on how deep the mixed layer is but also on the biomass prior to
deepening.

Now, if the biomass prior to deepening is larger than the steady‐state biomass associated with the deeper state then
biomass will decline as a result of deepening (Figure 7). However, if the biomass prior to deepening is lower than
the steady‐state biomass associated with the deeper state, then biomass will increase (Figure 7). Therefore, due to
the bio‐optical feedback, biomass may increase even during deepening. Such a process cannot occur without the
bio‐optical feedback in a model having only biomass as the single‐state variable. For it to take place in a model
that does not have the bio‐optical feedback in place, it is necessary to include either an equation for nutrients or
zooplankton, or both. Modelling nutrients allows for entrainment of nutrient‐rich deep water to the mixed layer,
elevating nutrient concentrations, which acts to increase production (Platt, Sathyendranath, et al., 2003). Adding
zooplankton enables the dilution recoupling mechanism, which acts to decrease grazing upon deepening. In both
cases, more than one state variable, apart from biomass, is needed in the model to achieve growth upon deepening.

The described model behavior also emphasizes the need for awareness and caution at model selection, especially
when it comes to model data comparisons. Many dynamical models nowadays are compared against remote
sensing data. When it comes to chlorophyll, as an index of phytoplankton biomass, such remote sensing data are
acquired in the visible part of the spectrum, because it is the photons from this part of the spectrum, which are
affected by chlorophyll and used in photosynthesis. To use such data in model data comparisons, it would be
reasonable that the light penetration submodels have at least the elementary treatment of the effect phytoplankton
have on the underwater light filed. Drawing conclusions from remote sensing data, which are based on light
absorption and scattering, about a model which does not have in it the effect of phytoplankton absorption and
scattering on the light field may simply be lacking, given that the effect of phytoplankton on the light field is what
enables remote sensing of phytoplankton in the first place.

8. Conclusions
In 1953, Sverdrup introduced the concept of a critical depth and thereby provided invaluable early insights into
the mechanism of phytoplankton blooms. Critical depth is a depth horizon for the mixed layer and if mixing
extends beyond it, light levels in the mixed layer become insufficient for photosynthesis to outpace losses. For
mixing not extending to the critical depth, the reverse holds. A related notion, the compensation depth, is relevant
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when mixing is weak, as it represents the point at which photosynthesis matches the loss rate at depth. To this day,
the ideas put together in the original paper of Sverdrup (1953) permeate the literature, as evident by the high
number of citations of the original work (Sathyendranath et al., 2015).

The paper presented here has extended the mathematical apparatus underlying the original work of
Sverdrup (1953) by examining the impact of self‐shading, which introduces a bio‐optical feedback into the
mathematical model. As a result of this analysis, a new differential equation was derived to describe the time
evolution of the compensation depth. By employing the new equation, it was demonstrated that light intensities at
both the compensation depth and the critical depth remain constant over time due to the bio‐optical feedback
within the mixed layer.

The paper has also provided exact solutions for the average and total mixed‐layer biomass at steady state and has
analyzed their stability properties. A bio‐optical bifurcation has been discovered, with the mixed‐layer depth
acting as the bifurcation parameter. The critical depth has been pinpointed as the bifurcation point where the
stability properties of the trivial and nontrivial steady states change. It was shown that the nontrivial steady state is
stable when the critical depth criterion is met, whereas the trivial steady state is stable when the critical depth
criterion is not met. The paper also explored transients between steady states and emphasized the crucial role of
the initial condition in determining whether changes in mixed‐layer depth result in an increase or a decrease in
biomass over time.

The presented analysis bears relevance in the study of climate tipping points, which are often defined with respect
to a threshold temperature (Armstrong McKay et al., 2022). With respect to phytoplankton, we see here that the
system stability depends on light available for photosynthesis and on the bio‐optical coupling between primary
production and mixed‐layer dynamics, which in turn depends on surface winds. An earlier paper (Kovač
et al., 2020) had also demonstrated the role of nutrient limitation on stability of phytoplankton. It would be
difficult to link changes in light, winds, or nutrients directly or indirectly to temperature, without a large number
of intermediate steps at best; and as demonstrated here, a more direct route to assessing stability in phytoplankton
would be to investigate the coupling between light and phytoplankton in relation to mixed‐layer depth. The results
suggest that bifurcation in phytoplankton depends on the relationship between mixed‐layer depth and critical
depth. In the climate change context, the condition of mixed‐layer becoming greater than the uncoupled critical
depth would trigger a decrease in biomass, with zero biomass becoming an attracting fixed point: persistence of
such extreme conditions would be an early signal that the system is under threat during that period. Note that the
bifurcation analyzed here is not an irreversible process: a decrease in mixed‐layer depth could reverse it.
Employing state‐of‐the‐art‐coupled hydrodynamic‐biogeochemical models to investigate such scenarios is a
potential course for future research. In this context also, the concept of critical depth provides a framework to
investigate such pressing questions of the day.

Data Availability Statement
This is a theoretical paper, and no experimental data have been used in it.
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