

Shifting vertical structure of phytoplankton in the Sargasso Sea

Bob Brewin¹, Qi Zheng¹, Johan Viljoen¹, Ella Tanner¹, Xuerong Sun¹, Žarko Kovač² & Shubha Sathyendranath³

¹University of Exeter, UK, ²University of Split, Croatia, ³Plymouth Marine Laboratory, UK

PML

Plymouth Marine Laboratory

cbiomes

Biogeochemical Modeling of Marine Ecosystems

Simons Collaboration on Computational

1. Summary

Since 2011, at the Bermuda Atlantic Timeseries Station (BATS), there has been an increase in surface ocean warming and a shoaling of the mixed layer (Lomas et al. 2022). This change has significantly altered the vertical structure of phytoplankton (Viljoen et al. 2024), reducing surface Chl-a, driven primarily by photoacclimation, and increasing subsurface Chl-a, thought to be related to enhanced biomass from increased subsurface light availability (Zheng et al. 2025). Here, we evaluate a very simple empirical model (Tanner et al. 2024) designed to quantify the integrated Chl-a concentration within the euphotic zone, from surface Chl-a, diffuse attenuation (K_d) and mixed layer depth (z_m) data. We show that the two terms of the model broadly reflect changes in surface and subsurface phytoplankton, by comparing output with two other models: a semi-empirical (conceptual) one (Brewin et al. 2022) calibrated to individual BATS profiles (Viljoen et al. 2024), and a two-layered NPZ box model (Zheng et al. 2025) validated at BATS. We show that all three approaches simulate a reduction in surface Chl-a and an increase in subsurface Chl-a at BATS since 2011. We then force the simple empirical model with satellite fields of surface Chl-a and diffuse attenuation (OC-CCI), and a mixed-layer depth reanalysis product (CMEMS global reanalysis, ORAS), to quantify the spatial extent of this shifting vertical structure.

(1) Three models

(2) Similar functional forms among models (BATS data)

- 2024-3502)